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Subdirección de Estudios de Posgrado
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Chapter 1

Introduction

Artificial Intelligence (AI) has gained major interest in the past decade, largely due

to the advances in machine learning [37] with algorithms that learn from data to

make predictions or take decisions to improve system performance, response time,

recognize patterns, or solution quality. The advances on AI create implementation

opportunities in mathematics, computer science, robotics, decision theory, among

others, where the labor market, economy, and other aspects of life are affected [37].

The use of machine learning techniques on the data generated in the past decades

made AI attractive, because it is possible to make decisions with a limited supervision

or gain new insight of the data.

Artificial intelligence focuses on studying how to emulate rational thinking,

whilst automated planning, as a branch of AI, studies how to emulate the ration

thinking that evaluates the possible actions in a environment and decide which

decisions of that actions achieves a defined goal. A main objective for AI is to

create autonomous systems [32] and to achieve it, automated planning is a keystone

in the AI future research.

Automated planning uses a description of the environment where it is going

to plan. It is based on a model where the initial conditions are the description of

that model including the objects in it, the set of available actions where each one

1
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requires a set of conditions to be fulfilled before it can be carried out, and a goal,

which captures the conditions to be fulfilled by the sequence of actions. A planner

is an algorithm that decides which series of actions accomplish the goal; the latter

is referred to as the plan which is executed from the initial state in a specific order

to achieve the goal.

To illustrate the automated planning problem a well-known problem called

blocks world is discussed. In this problem there is a set of labeled blocks on a table

where the goal is to build vertical stacks of blocks. The initial conditions are the

definitions of the blocks: they could be above the table or above another block

and each block could have its top free or with another block on it. Another initial

condition is a hand that could be free or holding a block. The set of available actions

are: pick-up of a block if the hand is free and the block has its top free, put-down of a

block that is holding in the hand and put it over the table or a block. The goal is the

position of the blocks on the stacks over the table. The plan is the followed sequence

of pick-ups and put-downs from the initial conditions until the goal is reached.

One of the advantages of automated planning is its autonomy: when supervi-

sion is difficult or not intended, when the previous information is not available, or

when the environment conditions, sets of actions, and goals change each time a plan

is requested [6]. Despite of automated planning is a difficult problem to solve, in the

past decades the efficiency of finding plans has increased and also the study of the

difficulty of the planning problems.

There are different ways to model an automated planning problem based on

certain assumptions about the environment. The one studied in this work is the

classical planning model which was one of the first to be studied by its simplicity,

and it was used to define some important problems such as: finding the existence of

a plan in a given model it is known as the Plan Existence problem. Other problems

studied by automated planning are the Plan Length problem, where a plan of at

most steps than a limit k is determined or the Minimal Plan Length problem where
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a plan with the minimal amount of steps is determined [10]. The algorithms used to

solve these problems are called planning solvers or planners.

One approach to solve a planning problem is to use the state-space graph. In

this graph a node represents a state and each node state is related with other node

states by the actions that can be performed in that state. With a set of node states

and a set of action edges, a state graph is defined. A state is formed by a set of

conditions in the environment and the initial conditions form a state known as the

initial state. This graph is built from the initial state ensuring that the preconditions

are fulfilled for each action; the result conditions from each possible action lead to

a new state with different conditions. This process is repeated for each generated

state creating a new state for each possible action in a node. Finally, when a state

that matches the conditions of the goal is created with a path from the initial state

that reaches it, the plan is the path of action edges from the initial state that reaches

the goal state.

Modeling a planning problem using a state-space graph is computational dif-

ficult, because the graph grows exponentially [30, 31], which complicates the search

for the goal. In computer science, the study of the computational resources needed

to execute an algorithm is known as algorithm analysis and the study of how to

describe a problem in terms of computational resources used to solve it is known as

computational complexity [28]. The computational complexity defines the complexity

classes to categorize a set of problems. It is based on the analysis of the minimum

resources required by an algorithm to solve an instance in the worst-case scenario.

One of the classes in which the problems require a huge amount of space and time

for an algorithm to solve them is the complexity class PSpace. For examples the

Plan Existence and the Plan Length problems of the classical planning are in this

class [8, 30, 31].

In the past decades the International Planning Competition (IPC) has been

organized by the International Conference on Automated Planning and Scheduling
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(ICAPS), where a diversity of planning solver approaches participate testing its

performances by solving sets of instances from different domains. The competition

facilitates sharing the advances in the state of the art techniques, leads to study

the domains used in the competition and incentivate the optimization of the solving

techniques [5].

One of the most-used planners to solve automated classical planning problems

in the competitions is GraphPlan [7]. It is an algorithm that constructs a multi-level

graph, known as the planning graph, to represent the conditions and actions available

from an initial state to search the goal. This algorithm, elaborated by Blum and

Furst [5] is a rich source of information because it reveals the plan length and the

reachability of the goal. Other planners use information retrieved from this graph

to improve the search process or to bound the state space such as Blackbox, LPG,

IPP, among others [7].

The planning graph is different from the state-space graph. In a state-space

graph there are state nodes and each edge is an action, the levels are the number

of edges from the initial state node to the goal state node and the conditions are

repeated in each state. In a planning graph the conditions are nodes and the action

joins its conditions with its effects, the conditions and effects are in different levels

of the graph, each level represents an action in the plan and the states are sets of

available conditions. This allows to build a model of the problem with less resources

than the state-space graph [5].

Even though the planning graph uses less resources to create a model of the

problem, the size of the model is not a definitive measure for the complexity of a

planning problem, there are other factors that intervene, such as the quantity of

delete edges allowed per action [8]. This leads to the study of domains to find other

features that intervenes in the performance of the planners.
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1.1 Hypothesis

Structural properties of the planning graph impact the performance of planner

solvers and can be used to characterize the difficulty of the corresponding instance.

1.2 Objective

The objective of this thesis is to identify properties from planning graphs of the

instances of classical planning problems to characterize its difficulty, and establish a

methodology to categorize the instances difficulty based in performance of planners.

This is performed by following the algorithm selection methodology to analyze which

features impact the planning solvers performance.

1.3 Contribution

The present work establishes properties that identify instances which can be solved

by the studied planners, a methodology is proposed to classify the instances based

on the performance of the planners that tried to solve them. The development of

tools to extract, store and analyze the used graphs to study the instances form part

of hte contribution, taking advantage of the use of data bases to store the huge

quantity of data, statistical analysis is employed to identify the properties in the

studied instances.

1.4 Thesis Structure

This work is structured as follows. The background is developed in Chapter 2,

consisting of three sections: automated planning, graph theory, and computational
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complexity; in Chapter 3, the previous works are reviewed and the differences among

them are discussed; in Chapter 4, the methodology to obtain data is explained

and the bases of the analysis are detailed. In Chapter 5, the proposed solution is

described by explaining which properties are used, how the relations are established,

and what are the expected results. In Chapter 6, the experiments and analysis of

the results are presented. Finally, the conclusions and future work are discussed in

Chapter 7.



Chapter 2

Background

This chapter explains all the background fundamentals of the present work, with the

purpose of exposing the main concepts utilized. The first topic is planning consisting:

the planning problem definition, existing approaches to solve it, and the GraphPlan

algorithm. This is utilized in the present work to generate graphs and investigate

what kind of relations exist in its structure. Afterwards, the graph-theoretical terms

used to analyze the planning graphs are defined. Finally, the basic concepts to

understand the complexity of planning problem are introduced.

2.1 Automated Planning

Automated planning is a branch of artificial intelligence that studies the process to

devise a sequence of actions for an agent to achieve goals, based on a model of the

environment where the actions will be carried out [27]. An agent is defined as any

device that perceives its environment and takes actions that maximize its chance of

success at some goal [31]. This model has four major components:

• State-transition system Σ.

• A state-transition function γ that defines the state conditions in the environ-

ment according to the actions modeled.

7
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• Controller to perceive the environment state s and execute an action a accord-

ing to a plan.

• Planner to devise a plan for the controller in order to achieve the goal, given

as an input a system Σ, an initial state S0 and some goal SG.

Some automated planning problems forms are based on the assumption of re-

strictions which are considered when an environment is modeled [27]. The restricted

model of automated planning consists in the following assumption restrictions.

A0 Finite Σ: the system Σ has a finite set of states.

A1 Fully observable Σ: it is completely known the state of Σ.

A2 Deterministic Σ: every action takes Σ to a one state only.

A3 Static Σ: the system Σ stays in the same state until an action is taken, there

are no outside actions or further events.

A4 Restricted goals: attempt to reach the final state SG, but it is not allowed to

avoid certain states or use utility functions.

A5 Sequential plans: the solution plan is an ordered finite sequence of actions.

A6 Implicit time: actions does not have duration, the state transition is immediate.

A7 Offline planning: the agent is not concerned about system Σ while the planning

process is being performed, there are no system supervision, new and restricted

actions or variables after the initial state.

Modifying any of these assumptions completely changes the form of the au-

tomated planning problem; for example, if the assumption A6 does not hold it is

known as temporal planning, if the assumption A2 does not hold it is probabilistic

planning, if the assumption A7 does not hold it is online planning, and so on. When

the eight assumptions are valid, it is known as classical planning.
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The classical planning problem is defined as a system Σ, an initial state S0,

and a goal state SG. The system Σ contains a γ transition-state function, a set A of

finite actions, and a set S of finite states. The classical planning problem is to find

a sequence of actions (a1, a2, . . . , ak) that applied over the initial state S0 it reaches

the goal state. Resulting in a sequence of transition states (S0, S1, . . . , SG) where

each state is the result of the γ function applied over the previous state with the

corresponding action S1 = γ(S0, a1), . . . , SG = γ(SG−1, ak).

A common way to manage a planning problem is to address each problem with

specific representations and techniques adapted to the problem definition [27]. This

is known as the domain-specific approach, where the definition of a specific model of

actions and transitions is used to take advantage of some particular property. This

improvement is dependent of the domain and is justified for having adequate solu-

tions, but this do not contribute to the study or design of an autonomous planner.

Because of this the automated planning focuses in an independent-domain approach

to study the general and abstract sides of devising how to choose an action. The

independent-domain approach is not opposed to the dependent-domain; it is im-

portant to have adequate and improved solutions in time and space, as it is also

important to understand and study in general how any plan can be devised.

To describe the environmental conditions, the state conditions and the actions

which are valid in an independent domain definition, there are different models

to represent it, such as the set-theory or the state variable representations. These

representations are restricted to the model; for this reason a more extended but equal

expressive representation was developed, the Planning Domain Definition Language.

2.1.1 Planning Domain Definition Language

The Planning Domain Definition Language (PDDL) describes the environmental

conditions where the agent starts planning. Four criteria are described to define a
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planning problem: an initial state, the available actions, the transiting state which

contains the results of applying an action, and the goal state.

PDDL is an action centered language, based on STRIPS formulations (Stan-

ford Research Institute Problem Solver) of planning problems, it is a simple stan-

dardization of the syntax for expressing a familiar semantic of actions, using the

preconditions and effects to describe the applicability of the actions.

For PDDL a state S is represented as a conjunction of ground conditions. The

initial state is conformed by the initial conditions of the world representation, where

a closed-world representation is used, which means conditions not mentioned are

considered false. A set A of action schemas defines the conditions needed to perform

each action with its effects. This action schemas consists of an action name, the list

of all variables used in the schema also called parameters, the preconditions, which

consists of unions of positive literals without functional dependency that need to be

true before the action, and the effects that are unions of positive literals without

functional dependency which are true after the action.

Algorithm 1 PDDL action schema example

Action( Fly(plane, from, to) ⊲ Action name and parameters

PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

EFFECT: ¬ At(p,from) ∧ At(p,to)

)

The goal is a conjunction of literals that are true after executing the plan, and

it is the result of an action, so the plan is the sequence of actions which are executed

in the initial state resulting in a final state that satisfies the goal.

For PDDL, the domain definition refers to the action schemes defined with a

set of variables that can be used in several problems, while the problem definition

is defined in a specific domain, and it refers to the assignation of the variables, the

initial state and the goal state.
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2.1.2 Planning Models

There is a variety of approaches used to solve a planning problem according to the

way the preconditions and effects are modeled.

When a planning problem is mapped into a satisfiability problem is called SAT

PLAN, by replacing each action schema with a set of ground actions, every action

variable is replaced for all possible values. This defines a new ground action for each

configuration, and finally it is used a propositional solver to get the variables values

that satisfies the goal [31].

A state-space search is the approach that tries to reach a goal state from the

initial state by constructing a transition graph with all states, then searches inside

the graph to find a plan that reaches the goal by a shortest path algorithm, here the

plan is the sequence of operators corresponding to the edges. But this approach also

grows exponentially in size [30, 31], for example, in a simple planning problem with

thirty binary state variables there are 230 = 1, 073; 741, 824 possible plans. With the

help of heuristic search algorithms, a state-space search deals with this exponential

growth.

In 1997, Blum and Furst [5] propose an algorithm known as GraphPlan. The

algorithm creates a structure known as planning graph, in polynomial time, the algo-

rithm also captures reachability information while creates the graph. The planning

graph is directed and leveled with two kinds of nodes and three kinds of edges as

seen in Figure 2.1.

In Figure 2.1 the levels alternate between two levels, in level 0 is a proposition

level that contains of proposition nodes or fact nodes, which are represented with

blue circled nodes, the level 1 is a action level containing action nodes which are

represented with green squared nodes. Edges in a planning graph represent relations

between actions and prepositions. The action nodes in action level i are connected by

four kind of edges: precondition-edges which join the action node with the proposition
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hand-free

Level 0

ontable A

ontable B

not-ontable A

holding A

Level 1

pick-up A

Figure 2.1: GraphPlan example. The blue nodes represent the facts, the green squared nodes

represent actions, the black edges represent the action preconditions, the red edges represent the

delete edges and the blue dotted edges represent the add edges; the green dotted lines divide the

levels in the graph.

nodes in proposition level i − 1 represented with black edges, add-edges which join

the add-effects in proposition level i + 1 represented with blue dashed edges and

by delete-edges to their delete-effects in proposition level i+ 1 represented with red

edges. The first level of a planning graph is a proposition level and consists of one

node for each precondition in the Initial State [5].

At first, the planning graph has just a single proposition level containing the

initial conditions as nodes which are also known as fact nodes, The GraphPlan

algorithm runs in stages, in each stage the GraphPlan takes the planning graph

from the previous stage and extends it one step, creating the next action level and

the following proposition level by adding the add-effects, the delete-effects and also

adding no-op actions which is a do-nothing action, leaving the same conditions for

the next stage. Then the algorithm searches in the extended planning graph for a

valid plan of length i, in each stage the GraphPlan algorithm either discovers a plan

or proves that there is no plan of with i steps or fewer [5].

GraphPlan analyses the mutual exclusion edges among the nodes. For action

nodes, two actions in the same level are mutually exclusive under three scenarios: if
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hand-free

Level 0

ontable A

ontable B

not-ontable A

not-ontable B

holding A

holding B

Level 1

pick-up A

pick-up B

Figure 2.2: GraphPlan example with mutually exclusive edges represented with brown edges

the actions have inconsistent effects, this means that no valid plan can contain both

actions, if the actions interfere with each other, and if the actions have mutually

exclusive preconditions. Similarly if two preconditions cannot be true in a valid

plan at the same time, then they are mutually exclusive, also known as mutex.

Exclusive edges identify actions that interfere with each other as dependent actions,

and competed preconditions, if two preconditions for different actions are marked as

exclusive [5]. The analysis of the exclusive relations in the planning graph allows to

identify properties of the instance.

The Figure 2.2 shows some mutex relations with brown edges. This graph is

part of the planning graph generated from a blocks world problem, in this problem,

there are certain number of blocks in a table. The actions of pick-up or put-down a

block from the table, and the actions stack or unstack a block over other the goal

is to form piles of blocks over the table in a certain order. The pick-up actions are

mutually exclusive because each of them interferes with the other when hand-free is

deactivated in every pick-up action, intuitively, it is not allowed to simultaneously

pick up two blocks with the same hand. The ontable and not-ontable conditions

are mutex because one is the negation of the other, just as the facts holding and
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hand-free.

The GraphPlan algorithm is sound and complete [5]: any plan the algorithm

finds is a legal plan, and if there exists a legal plan then the algorithm will find one.

Also GraphPlan creates a planning graph in polynomial time.

2.1.3 Planners

Planners are developed based on the approach used to model the problem. Planners

that use a state-space graph and heuristics to guide the search with in the graph

are LAMA, HSP, and FF. Blackbox, IPP, STAN, and LPG are based on GraphPlan

and SATPLAN, MAXPlan are based on planning as satisfiability.

State-space graph planners have been improved to deal with temporal planning

problems, while the planning as satisfiability approach was improved to avoid explor-

ing all the possible variable configurations, both with the help of heuristic methods.

There are planners which combine some or all of the approaches to get information

to guide heuristics and optimize the planner performance such as AltAlt, Blackbox,

and HSP.

2.1.4 International Conference on Automated Planning

and Scheduling

The International Conference on Automated Planning and Scheduling (ICAPS) is a

forum for researchers in the Artificial Intelligence fields of planning and scheduling.

Since 1998 it is has been carried out by the International Planning Competition

(IPC) to create planning domain problems, make comparisons among existing plan-

ners and measure the progress in the field [26]. In the 1998 competition, almost all

participants were based on the GraphPlan algorithm [26]. After this, partial-order
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and satisfiability techniques were used with the GraphPlan algorithm to improve the

state-of-the-art solvers.

Nowadays, IPC includes different competition tracks, besides the classical plan-

ning, there are temporal and probabilistic planning tracks due to the advances

achieved since the beginning of the competition. Also the classical competition

track has been improved by supporting new requirements and creating new domains

to research.

Each competition proposes a set of domains where a set of problems are defined,

also new planners are introduced using new techniques to be tested. In the remain

of this section, the available information of each competition is described.

2.1.4.1 IPC 1998

The competition domains, problems used, and the participant planners were reported

by McDermott [26]. The information in this section is mainly based on that work,

and on the historic web page of the competition1, and later works [16, 22, 36].

This competition was featured by the Artificial Intelligence Planning and Schedul-

ing Conference (AIPS), there were five participants planners in the STRIPS track

with five domains in total. Table 2.1 describes the domains used and Table 2.2

describes the participanting planners.

Besides the planers exposed in Table 2.2, there was other domain defined in the

competition, the assembly domain that was not used in the present work because it

is not in a STRIPS definition and was not possible to get the planning graphs from

it. Each domain has 30 instances.

1http://icaps-conference.org/index.php/Main/Competitions



Chapter 2. Background 16

Table 2.1: IPC 1998 planners.

Planner name Description

Blackbox A GraphPlan based planner that converts the planning graph into

a Satisfiability problem.

IPP An optimized implementation of GraphPlan, extended to handle

expressive actions.

HSP A planner based on heuristic search guided by means-ends analysis.

STAN An optimized implementation of GraphPlan that uses an in-place

graph representation and performs sophisticated type analysis to

compute invariants.

2.1.4.2 IPC 2000

This competition was also featured in the AI Planning and Scheduling Conference,

the competition domains used and the participant planners were reported by Lin

et al. [25]. The information of this section is mainly based on that work and of the

competition web page.

In this competition fifteen planners contest, with five domains in total. The

description of the domains used is in Table 2.4 and the description of the participant

planners is in Table 2.3.

Table 2.3: IPC 2000 planners

Planner name Description

Blackbox A GraphPlan based planner that converts the planning graph into

a Satisfiability problem.

IPP An optimized implementation of GraphPlan, extended to handle

expressive actions
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Planner name Description

HSP2 A descent of the HSP planner of the 1998 IPC. The idea is similar

planning instances are mapped into state-space search problems

that are solved with heuristics extracted from the representations.

STAN An optimized implementation of GraphPlan that uses an in-place

graph representation and performs sophisticated type analysis to

compute invariants.

MIPS Uses binary decision diagrams to compactly store and maintain sets

of propositionally represented states. The concise state represen-

tation is inferred in an analysis prior to the search and, by utiliz-

ing this representation, accurate reachability analysis and backward

chaining are carried out without necessarily encountering exponen-

tial representation explosion

System R A planner based on regression, and solves a goal one at a time.

FF Fast-Forward is a variation of the HSP. Using GraphPlan infor-

mation, FF employs a novel local search strategy that combines

Hill-climbing with systematic search.

PbR Planning by Rewriting takes the output of a simple, low-quality

planner and rewrites the plan to produce a better plan.

Propplan Based on naive breadth-first state-space search, uses ordered binary

decision diagrams to implement exhaustive state space exploration.

SHOP Simple Hierarchical Ordered Planner, is a domain-independent

HTN planning system that uses a novel left-to-right plan-

elaboration scheme

TokenPlan Combines classical AI planning and game theory. It handles sets

of states relevant to the criteria which are optimized by the game-

theory to control the level of splitting of the search space.

BDDPlan Uses binary decision diagrams to support reasoning in the fluent

calculus.
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Planner name Description

TALPlanner Domain-dependent search control knowledge expressed as temporal

logic formulas is used to effectively control forward chaining.

AltAlt A planner that uses effective and admissible heuristics extracted

from the planning graph to drive the backward state space search.

GRT Greedy Regression Table planner is a domain independent heuristic

state space planner.

2.2 Graph Theory

This thesis is principally influenced from graph theory, so a basic introduction is

presented to set a background, primarily based on the book of Diestel [9].

A çgraph is a pair of sets G = (N,E) where E is contained in the Cartesian

product of N satisfying E ⊆ N ×N . The elements of N are called nodes, vertices or

points; the nodes are denoted by lowercase letters as a or b assuming a, b ∈ N and if

the nodes are enumerated or labeled then are represent as a0 or alabel. The elements

of E are called edges or lines. The node set of a graph is referred as N(G) and the

edge set is referred as E(G); an edge involving two nodes is usually written as ab,

Eab or E(a, b) where a, b ∈ V .

The number of nodes in a graph is known as its order, written as |G|, |N |, or

n, the number of edges is denoted as ||G||, |E|, or m. A node a is incident with an

edge Eab if a ∈ Eab, then Eab is an edge at a. The set of edges incident to node a

is denoted as E(a); the two nodes incident with an edge are end nodes or ends, and

the edge joins its ends. Two nodes a, b are adjacent or neighbors if an edge exists

in G with a and b as end nodes, and if two edges share one end then are adjacent

edges.

If all nodes in G are pairwise adjacent, then G is a complete graphKn, otherwise
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Table 2.2: IPC 1998 domains.

Domain Description

gripper A robot must move a set of balls from one room to another,

being able to grip two balls at a time, one in each gripper.

logistics There are several cities, each containing several locations, some

of which are airports. There are also trucks, which can drive

within a single city, and airplanes, which can travel between air-

ports. The goal is to get some packages from various locations

to various new locations.

movie The goal is to have lots of snacks in order to watch a movie.

There are seven actions, including rewind-movie and get-chips,

but the number of constants increases with the problem num-

ber.

mystery There is a transportation network through which vehicles could

move carrying cargoes. A vehicle could move from one node to

a neighbor node if there were fuel at the originating node.

mprime This is the mystery domain with one extra action, the ability to

squirt a unit of fuel from any node to any other node, provided

by the originating node has at least two units.
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Table 2.4: IPC 2000 domains

Domain Description

blocks world A finite number of blocks stacked into towers on a table large

enough to hold them all.

logistics Same domain used in the 1998 IPC, where a collection of pack-

ages at various locations and cities and are transported between

locations by trucks or airplanes.

schedule This domain consists of nine machining operators that do things

such as paint, grind, and drill an object. The goal is to trans-

form some collection of objects by performing various machin-

ing operations on them.

freecell The solitarie card game included in the Windows operating

system, with four squares known as the home cells, one for each

suit and four free cells that act as temporary space. The goal

is to move all the cards home in order.

elevator Based on a sophisticated elevator that given a floor request to

a controller, it indicates which elevator use in an attempt to

minimize the delay time.
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it is a incomplete graph. A set of nodes or edges is independent or stable if any pair

of its elements are not adjacent.

If G is a non-empty graph, the set of neighbors of a a node in G is denoted as

NG(a) or if the graph reference is clear just by N(a). The degree of a node is the num-

ber of edges at a, d(a) = |E(a)|, in a simple graph the degree of a node is equal to the

number of neighbors of that node. The number δ(G) := min {d(a) | a ⊆ N(G)} is the

minimum degree of G, and the maximum degree is ∆(G) := max {d(a) | a ⊆ N(G)}.

If δ(G) = ∆(G) = k then G is k-regular, or simply regular. The average degree of G is

given by d(G) := 1
|N |

∑
a⊆N(G) d(a). The density of a graph is given by ǫ(G) := |E|

|N×N |
.

2.3 Computational Complexity

Computational complexity is an area of computer science that classifies the problems

according to its inherent difficulty. An algorithm is a sequence of actions to be

performed from an given input to reach an output, so a solve procedure for a problem

is an algorithm. The analysis of algorithms is the area where is the studied the

resources needed by an algorithm to solve a computing problem. For example, a

sorting problem, having all possible permutations of the elements can be solved by

reviewing each one, but the number of permutations is given by n! where n is the

number of elements to sort.

Considering the resources, the model of computation and the mode of compu-

tation, a problem can be classified into a complexity class. The model of computation

refers to the definition of allowed operations and its resource cost, for example, in

a Turing machine (TM) defined by four major components: a tape, that is divided

in cells and in each cell a character from a finite alphabet is placed, a header that

writes and reads the characters over the cells of the tape, a set of states which repre-

sents the possible states of the TM, and a transition table, with the instructions to

perform based on the TM state and the characters on the tape. The number of cells
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used on the tape is the resource of space, while the number of instructions performed

by the TM, is the resource of time. The mode of computation refers to a probability

to change from one state to another, a TM can be defined in a deterministic or in a

non-deterministic mode.

In a TM, the list of characters on the tape are called words, and the set of

words computed by a TM that reach a final state is known as a language. A TM

can simulate any algorithm with out significant loss of efficiency [28]. All computing

problems or languages handled by a TM in a specified mode can be classified ac-

cording to a hierarchy class based on the size of the problem instance and the main

resource to be bound, principally space and time. So, a complexity class is defined

as the set of all languages decided by a TM operating in the appropriate mode, such

that for any input x, the TM expends at most f(|x|) units of the specified resource

[28].

Some complexity classes [28] used in this thesis are:

P ⊆ NP ⊆ PSpace ⊆ ExpTime; (2.1)

PSpace = NPSpace. (2.2)

The class P represents all computing problems solvable in deterministic poly-

nomial time P = Time(poly(n)) for an input size f(n), the class NP represents

all computing problem solvable in a non-deterministic TM in a polynomial time

NP = NTime(poly(n)) for an input size f(n), the class PSpace represents all com-

puting problems solvable with a polynomial size of space PSpace = Space(poly(n))

for an input size f(n), and ExpTime represents all computing problems solvable in

a exponential amount of time ExpTime = Time(2poly(n)) for an input size f(n).

While the classes P, NP, and ExpTime are by definition bounded by time,

the class PSpace is bounded by space: there is a polynomial number poly(n) of

space units so there are 2poly(n) possible values, and if there are k possible states,

at worst case, a solve procedure which uses a polynomial amount of space can take
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k · poly(n)2poly(n) steps to end, which is a exponential amount of time ExpTime.

Equation (2.2) refers to an important complexity result, the Savitch theorem.

It establishes that an algorithm in a non-deterministic mode which uses a polynomial

amount of space can be transformed into an algorithm in a deterministic mode using

an square amount of space.

Three important definitions in the complexity classes field are reductions, com-

pleteness, and hardness. A reduction between two problems A,B refers to a trans-

formation T which for any input x ∈ A that answers the problem A produces an

input y = T (x) for the problem B, where this transformation take at most polyno-

mial time. Completeness in a complexity class refers to all set of problems x in a

complexity class for which is possible to reduce any other problem in that class y

to the problem x. Finally, hardness in a complexity class refers to a problem y that

can be reduced to a complete problem in that class in polynomial time.

The theoretical complexity of planning is in the complexity PSpace. Even

if some severe restrictions are made, the problem often remains quite difficult; for

example, if negative effects are disallowed, is reduced to an NP-hard problem, but

if negative preconditions are disallowed is reduced to the class P. Therefore, by its

complexity, optimal planning is usually hard, but sub-optimal planning is sometimes

easy with the help of good search heuristics [31].
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Related Work

The existing approaches for studying the planning problems are presented in this

chapterin the form of literature review of automated planning, the computational

complexity works in automated planning and similar works in other fields studying

the structural properties on problems to improve solving procedures.

3.1 Literature Review

Automated planning research begins in 1969 with the development of theorem solvers

[13]. The translation from a theorem solver to an automated planning is defining a

domain where the axioms are the initial conditions, the actions are the operations

allowed between the axioms, and the goal is locate a specific theorem given a set

of axioms. The theorem solver problem was quite difficult given the hardware and

techniques available, it was even considered intractable. In 1971, with the STRIPS

definition [11] the basis for classical planning was established and the automated

planning research started to grow.

In 1991 Bylander, Bäckström and Nebel [3, 8] published a series of works

that established the classical planning problem as the complexity class PSpace-

complete considering the models of the STRIPS and for the SAS+ definitions.

24
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These definitions are equivalent differing how to definite the actions and conditions,

but for the same domain a SAS+ definition can be transformed in a STRIPS defi-

nition and vice versa, they are equally expressive [1].

The results of Bylander take away the intractable status of the automated

planning problems and proves that under certain restrictions in the domain definition

there are planning problems in other complexity classes. For example, a problem

definition that allows no negative postconditions is in NP-complete complexity

class or a problem definition that allows no negative preconditions and just one post

condition is in P complexity class.

Alongside the computational complexity study of the planning problems, in

the automated planning field new techniques were developed in order to solve the

planning problems with planners such as POP, GraphPlan, SATPLAN among others.

These planners solved planning problems with reasonable resources using heuristics,

memoization, relaxation techniques, etc. These results establish a series of works

where other planning problem types were studied by computational complexity [2,

30] and also a study for the computational complexity of the domains used in IPC

and the benchmarks for research [12, 14, 16].

Another important result was the development of the GraphPlan algorithm.

It implements a structure that uses a polynomial amount of space besides others

structures which uses a exponential amount of space [5]. GraphPlan uses a limited

structure to solve the planning problems where others solvers, such as SATPLAN,

used to create a exponential structure to simplify it. These differences result in the

development of two kind of planners that perform differently on same domains: the

planners that use a propositional satisfiability solver, called SATPLAN, and planners

that use GraphPlan.

The sequential domains form a hierarchy that have mutual exclusive relations

that restrict parallelism and forces a sequence of actions in it [24], the non-sequential

hierarchy of domains does not have this restriction, and with in it was established
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the transportation domain hierarchy [16, 18], where is possible to take advantage of

parallelism according of the locations, mobiles, and portables defined.

An important result is that the SATPLAN-based planners had fast results on

the sequential domains, while GraphPlan based planners are faster in non-sequential

domains with parallel action such as the transportation domains [16, 24].

Kautz and Selman [24] develop Blackbox, a planner that creates a plan graph

based on GraphPlan algorithm to try to solve it, and if no solution is found, parses

the graph to a conjunctive normal form well-formed formula (CNF wff) and uses

satisfiability heuristics to search for a plan. The integration of these approaches was

motivated by the discovery of the sequential hierarchy in planning problems and

resulted in a planner that had the best results in IPC of 1998 [26].

Furthermore Hoffmann and Nebel [21] use GraphPlan to take advantage of

a result from Bylander [8, 21] to create the Fast-Forward planner. Bylander es-

tablished the difficulty of plan existence in planning problems with non-negative

postconditions as NP-hard [8], the Fast-Forward planner uses the relaxed problem

with not negative postconditions, represented by delete edges in the planning graphs

and solve it, the plan obtained by the relaxed solution is used as heuristic evaluation

to estimating the goal distance [19–21]. The planners based on this approach are

known as heuristic-based planners.

In the lastest competitions, the approach on which most of the planners are

based is the Fast-Downward planner. The Fast-Downward planner was developed

by Helmert and is a heuristic based planner but instead of using relaxed problem,

the planner take advantage of causal relations in actions to constructs a structure

known as causal graph to use it to guide the plan search.

The previous planners were develop by studying the planner performance, the

domains characteristics, and its computational complexity. This is quite familiar in

optimization, where given a optimization problem is important to understand the

relationship between the algorithm performance and the optimization problem on
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which it runs. It is known that there is no algorithm performs well on all classes

of problems regardless the structure and characteristics of the instance [38]. The

algorithm portfolio approach uses this to use the appropriate algorithm given the

structure of the instance.

An example of an algorithm portfolio was exposed in the 2007 SAT competition

[39] where the situation is quite similar to the situation presented in IPC. There is

a variety of solver approaches available and rather than choosing the best solver

for a given class, an online decision maker chooses the solver that offers the best

performance for the given instance based on machine-learning models of instance

features and the algorithms past performance. Algorithm portfolio is also used in

other problems, such as scheduling, knapsack, and job shop [15, 33, 34, 39].

In early competitions, some planners have the opportunity to choose the algo-

rithm to use and the heuristic based planners. However in recent competitions, the

portfolio approach is widely used in the state-of-the-art planners, optimizing running

time and solution quality of the planners and heuristics performance [35].

The algorithm portfolio is mainly based on the algorithm-selection problem

[29] to decide which algorithm from the portfolio is likely to perform best based on

measurable features of a collections of instances. This algorithm uses four compo-

nents:

• Problem space: the set of instances.

• Feature space: the set of measurable characteristics of instances.

• Algorithm space: the set of algorithms, also known as the portfolio.

• Performance space: the set of mapping function for each algorithm to a set

of performance metrics.

Based on the components of the algorithm, the portfolios used in the planner

solvers mainly generated the performance space with performance of the algorithms
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Figure 3.1: Components of algorithm selection

on the set of problems from the past competences, while the feature space varies

in each planner according with the approaches used by the heuristics, the selections

mapping S(f(x)) is inferred with machine-learning techniques [35].

Analyzing the features used by the Fast-Forward planner [21], where a relaxed

problem without negative postconditions is used to guide the plan search. Bylander

[8], demonstrate that the relaxed problem without negative postconditions is NP-

complete, becuase it removes all mutex relations from the graph [21].

Bäckström et al. [4] analyze the unsolvable planning problems instances through

mutex groups: sets of propositions or facts that any state reached from the initial

state have one mutex proposition. They suggest it as an important feature to ana-

lyze.
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3.2 Comparative Study

The computational complexity works on automated planning are mainly focused

on the analysis of the problem definitions [3, 8], although there are studies of the

computational complexity of the domains [12, 14, 16, 22, 26] no study has been

published that tries to identify a structure in the problem based on the analysis of

the problem structure of the planning graphs.

Algorithm portfolios are designed to offer a optimized performance of the plan-

ning solver based on previous information; there is no study of features along the

domains and planners in order to obtain a metrics about the difficulty or to identify

features related to the performance of the planners.

In Table 3.1 a comparison with other works is presented considering the follow-

ing features: if there is a difficulty classification of the instances in the work, if there

is a feature analysis of the instances, if there is a domain feature analysis, algorithm

features analysis, problem structure analysis, complexity analysis, or whether it is

planning oriented. The work considered is discussed next.

Kautz and Selman [24] present the Blackbox planner based on an analysis of

the algorithms and problem structure that identifies a benefit of the GraphPlan over

the domains with parallel actions is one of the result that motivates the fusion of the

GraphPlan and SAT planner techniques; the present work follows this perspective

and extends it with a analysis of the graph structure of the instances to identify

features by domain and problem.

Hoffmann and Nebel [21] present the Fast-Forward planner based on the anal-

ysis of the domains, algorithms and instance definition of planning problems, in this

works was followed its perspective to identify instance structure features that could

impact the performance of a planner.

Helmert [16] presents complexity results based on the domain definitions. Also
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the transportation hierarchy is defined in the present work. The present work follows

this approach to identify some domain hierarchy based on the graph structures of

the instances.

Smith-Miles and van Hemert [33] present a portfolio algorithm for the Travel

Salesman Problem. The structure of a algorithm portfolio is taken in account to use

it as a base for the feature discovery analysis.

Vallati et al. [35] present the catalog of the participant of IPC of 2014 where

some algorithm portfolio are presented, this portfolios use machine learning tech-

niques to categorize some problem features over the best planner for it; the present

work is different because is focused in the instance structure.

Bäckström et al. [4] study the unsolvable instances of planning problems based

on features of the instance structure. The present work also tries to contribute in

also identify features for unsolvable problems.

3.3 Contribution

The present work offers a different approach to identify features on instances that

impact the planner performance. Taking advance of planning-graph structure, is

possible to study near than four hundred graphs structures and near than six million

nodes. With the quantity of information generated, tools were developed to analyze

the graphs and databases were implemented to facilitate the study of the graphs.

Finally, the present work offers a classification method for the domains based on the

instance performance.
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Table 3.1: Comparison of cited works.

Feature

Kautz and

Selman

[24]

Hoffmann

and Nebel

[21]

Helmert

[16]

Smith-

Miles and

van

Hemert

[33]

Vallati

et al. [35]

Bäckström

et al. [4]

Present

work

Difficulty

classification
✗ ✗ ✗ ✓ ✓ ✗ ✓

Problem features

analysis
✗ ✗ ✓ ✓ ✓ ✓ ✓

Domain features

analysis
✗ ✓ ✓ ✗ ✗ ✓ ✓

Algorithm features

analysis
✓ ✓ ✓ ✓ ✓ ✓ ✓

Problem structure

analysis
✓ ✓ ✓ ✓ ✓ ✓ ✓

Complexity analysis ✗ ✓ ✓ ✗ ✗ ✓ ✓

Planning oriented ✓ ✓ ✓ ✗ ✓ ✓ ✓



Chapter 4

Methodology

The methodology is discussed in this chapter, starting with the description of the

planning-instance analysis; later, the tools used to obtain the graphs and the data

extracted are explained. Finally the domains, algorithms, and the available perfor-

mance results are discussed.

4.1 Description of the Analysis

In order to study the planning instances and identify the structural properties to

categorize them, this analysis is focused in the structure of the instances and the

planning solver performance. By following the portfolio algorithm [29, 33], the

algorithm-selection components are used as guide as the base of this analysis, defin-

ing the problem set, the algorithm set, the performance set and the feature set.

To obtain the problem set, the Blackbox planner is used to extract the planning

graphs from each instance. Blackbox was developed by Kautz and Selman [24]

and presented in the 1998 International Planning Competition (IPC) [26]. This

planner is based on the original GraphPlan planner. It use GraphPlan to find a

plan and when no plan is found, the planning graph is parsed into a conjunctive

normal form (CNF) well-formed formula (wff) to use solving methods based on the

32
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planning as propositional satisfiability (SATPLAN) [23]. Blackbox works with the

PDDL definition domain meanwhile GraphPlan planner uses the STRIPS definition

domain. The diversity and quantity of the available instances in PDDL compared

to the instances in STRIPS is the main reason why Blackbox was used to obtain the

planning graphs. This allows us to study most of problem definitions used in IPC,

which are in PDDL definition.

The Blackbox implementation is written in C++ programming language and

it use a parsed code from the GraphPlan implementation from Blum and Furst [5]

which is written in C programming language. Both implementations use a list of

node structures to represent the graph, where each node has a list of its edges. To

extract the graphs, a deprecated function that draws the planning graph is modified

to parse its graph structure into a file, this avoid the modification of the original

algorithm.

The graph structure was parsed to a (JSON), because it allows to represent

the nodes and edges of the graph with all the properties defined in the Blackbox

implementation. Extracting the graphs as JSON also allows to analyze the graph

outside the planner solution process. Finally, the JSON files are stored in a database.

The list of properties defined in the node class of the GraphPlan and Blackbox is

given in Table 4.1, the graph class contains the instance name and the list of nodes.

The graph information is the basis for obtaining the feature set for the algorithm

selection.

As mentioned, the instances used in IPC are available in PDDL on the ICAPS

page1. This archive contains all competitions, since the first one in 1998 until present.

The competitions of the years 1998 and 2000 were selected for executing the plan

graphs and performing the analysis.

This archive also contains the results of the competition for each planner that

executed an instance; if a plan was obtained, the plan length and execution time

1http://icaps-conference.org/index.php/Main/Competitions
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Table 4.1: Description of node properties used in GraphPlan.

Property Description

Name Node name.

Hashval Hash identifier.

Type Node type.

In edges List of in edges.

Out edges List of out edges.

Del edges List of delete edges.

Exclusive List of exclusive edges.

Excl in this step List of exclusive nodes in this level.

Is true Indicates if the node is included in plan.

Cant do Indicates if the node is exclusive.

Uid block Unique identifier for the block.

Uid mask Unique identifier for the time.

Is noop Indicates if the node is a No-Op action.
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Table 4.2: Performance values of the planners.

Property Description

Name The instance name.

Comp The competition name.

Planner The planner name.

Time Reported execution time.

Steps Reported plan length.

are reported also the comparatives among the planners results are included. Table

4.2 presents the available information from the selected IPC competitions about the

planners and its performance for each instance. The results comprise the perfor-

mance set and the participant planners are the algorithm set.

In order to obtain the graphs, the Blackbox planner needs to be execute until a

solution is found or it halts. The parameters to set are the quantity of nodes allowed,

the time to execute the plan search by each method, and number of levels or steps for

the plan length search. Such information is not available in the competition result

reports, so the parameters were set as follows, up 32,000 nodes per level, which is

the maximum value allowed, up to 10 seconds of execution for each solver available

in Blackbox in each level and, 200 levels before halting.

The planning graphs are multi-leveled with two types of nodes and four types

of edges. There are fact and action nodes, and for the edges there are in, out, delete,

and exclusive edges. On each level, the fact nodes are connected by the in edges

to the action nodes of its level, are connected with the out and delete edges of the

previous level, and with the exclusive edges between those facts that have a mutex

relation; the action nodes also have exclusive edges with those actions that are in a

mutex relation.

With the extracted planning graphs of the Blackbox planner, an analysis is

done to identify which characteristics of the graph are used as the features of the
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feature set. First a python script was written to perform the analysis in each JSON

file, but due to the quantity of graphs and its file size the time to read each file was

huge, there were more than 600 graphs with sizes with some MB in small instances

to sizes above of 10 GB in the big instances.

The graphs are structures with collections of nodes and collection of edges,

therefore a database was used to store the graphs and perform the analysis through

queries. This reduces the analysis time and makes it easy to obtain the summarized

data of graphs. The selected database was MongoDB2, an open-source database

that instead of storing the information in table structures, manages documents with

schemas. The JSON representation of the graph includes in each node a list of each

edge by type; the MongoDB documents facilitate storing this as a whole document

instead than creating tables with the node and edge information. With the JSON

representation of the planning-graph instances, importing them to the database was

done with a python script.

Based on the planning-graph structure, the characteristics for each node of the

graph were analyzed to studying the distribution of the characteristics in all the

graph and on each level. These characteristics are described in Table 4.3.

With the information in Table 4.2, a node metric can be used among instances,

and level information can be grouped; the list of characteristics used by level and by

graph are in Tables 4.4 and 4.5.

With the summarized information by level and graph, metrics like ratios of

nodes and edges by type, growth by level can be obtained. Now, that is the defined

the methodology to obtain the feature metrics, a review of the planner is exposed

describing its performance on the competition results to identify common features

among them.

2https://www.mongodb.com/
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Table 4.3: Description of the node attributes used in the analysis.

Property Description

Hash Hash value of node name, used to identify

the node in the graph.

Name Node name.

Type Type of the node a fact or an action.

Level Level number where the node belongs.

Total in degree Total amount of edges of all types were the

node is the tail.

Total out degree Total amount of edges of all types were the

node is the head.

Total in edges Total amount of in edges of the node.

Total out edges Total amount of out edges of the node.

Total delete edges Total amount of delete edges of the node.

Total exclusive edges Total amount of delete edges of the node.

Table 4.4: Description of level-based metrics used in the analysis.

Property Description

Gid Identification key of the graph.

Name Instance name from which the graph was

extracted.

Level Level number.

Total Total nodes in the level.

Total facts Total fact nodes in the level.

Total actions Total actions nodes in the level.

Total mutex facts Total mutex fact nodes in the level.

Total mutex actions Total mutex actions nodes in the level.
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Table 4.5: Description of graph-based metrics used in the analysis.

Property Description

Gid Identification key of the graph.

Name Instance name from which the graph was

extracted.

Competition Competition name.

Total levels Maximum number level in this graph.

Total Total nodes in the graph.

Total edges Total edges in the graph.

Total facts Total fact nodes in the graph.

Total possible edges Maximum possible edges in the graph.

Total actions Total actions nodes in the graph.

Total mutex facts Total mutex fact nodes in the graph.

Total mutex actions Total mutex actions nodes in the graph.

Density The density of the graph edges.
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4.2 Input Data

Each competition has a different set of domains and planners, so for each one is

analyzed which features can be used. To identify the factors that influence the

planner performance, the information already available in the competence results

was used, the main results reported are the plan length and the execution as shown

in Table 4.6.

Table 4.6: Description of performance measures of planners.

Metric Description

Competition Name of the competition where the result is reported.

Planner Name of the planner used to solve the planning problem instance.

Domain Name of the domain where the problem instance is contained.

Problem Name of the problem instance, each one is different of each other.

Plan length The plan length reported by the planner: -1 if no plan found.

Time Time reported in milliseconds of the planner execution.

4.2.1 Results of IPC 1998

The domains, instances, and participants of IPC 1998 were described in Section

2.1.4.1. The full dataset is available in the git repository3 of the present work. In

Figures 4.1, 4.2, 4.3 the variation of time, length and solved instances in each planner

by domain are presented.

As shown in Figure 4.1, the domains for movie, mprime, and mystery are the

ones that require fewer actions and gripper and logistics have instances with more

than fifty steps; mystery and mprime domain are quite similar as mprime has one

more action than mystery, this is reflected with similar plan lengths. In Figure 4.2 is

3https://github.com/ppGodel/StructuralCharacterizationOfPlanningProblems

https://github.com/ppGodel/StructuralCharacterizationOfPlanningProblems
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Figure 4.3: Number of solved instances by planner in each domain in IPC 1998

the time comparison, the movie domain requires less than a second to get a plan the

other domain which require a greater amount of time, also the mystery and mprime

have similar times. Finally the quantity of solved instances by planner and domain

is shown in Figure 4.3, is important to mention that not all instances were resolved,

specially for gripper, the HSP planner solved the most quantity of instances and

solved the longest plans but use more time. The GraphPlan based planners solved

almost the same quantity of instances.

A main result from 1996 by Kautz and Selman [23] is the definition of sequenc-

ing domains. In the sequential domains the interaction of exclusion edges between

the actions and sub-goal sequences result in a sequential actions goal. For this com-

petition, assembly is the only sequential domain but it was not included in this

analysis. The domains gripper, logistics, mystery, and mprime are transportation

domains which could be solved with parallel actions, this will be considered in the

difficulty classification analysis.
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The competition results suggest some facts to consider: the instances in the

movie domain appear to be easy to solve, considering the small amount of steps and

time required and that almost all planners solved them. The instances in domains

mprime and mystery appear to be average in difficulty, considering that them use a

grater amount of time and steps than the movie domain and not all instances were

solved. Finally the instances in domains gripper and logistics take almost the same

time to be solved, but have larger plan lengths and fewer instances solved, which

suggest that they are the more difficult instances to solve in this competition.

4.2.2 Results of IPC 2000

For this competition the domains, instances, and participants of the IPC 2000 were

described in Section 2.1.4.2. The full dataset is available in git repository4 of the

present work. In Figures 4.4, 4.5, and 4.6 the variation of time, length, and solved

instances for each planner by domain are presented according with the registered

results.

This competitions had a increased and diverse participation with fifteen plan-

ners and five domains. The plan length comparison is shown in Figure 4.4: almost

all planners have similar performance and just one planner solved instances with

plans of 150 or more steps. For domains, freecell had longest plans and schedule the

shortest plans. The time comparison of planners is shown in Figure 4.5. In contrast

with the plan length, the times reported had more variance for all planners; no plan-

ner is the quickest or the slowest for all domains. For domains, schedule had the

shortest plans. Finally, the percentage of solved instances by planner and domain

is shown in Figure 4.6 where just system-r planner solved more instances over all

domains, and the elevator domain had the greatest number of planners that solved

almost all of its instances.

4https://github.com/ppGodel/StructuralCharacterizationOfPlanningProblems

https://github.com/ppGodel/StructuralCharacterizationOfPlanningProblems
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Figure 4.4: Comparison between plan length and domain in IPC 2000.

4.3 Preprocessing

In the studied competitions, blocks is the only sequential domain. The domains ele-

vator and logistics are consider as transportation domains and freecell and schedule

are not considered in a particular type of domains. For the IPC 2000, the domains

were more challenging in terms of the percentage of solved instances and times re-

ported. While in IPC 1998 there were no domains with long plans, the IPC 2000 had

several instances with long plans. For the percentage of solved instances and time

required to solve them, the logistics and schedule domains present more difficulties.
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Proposed Solution

An instance-difficulty classification of planning problems and a methodology to iden-

tify properties that explains that difficulty based on the instance planning graph are

proposed in this chapter. The instance-difficulty classification uses the results of

the International Planning Competition (IPC) and some size metrics of the plan-

ning graphs to classify the instances; these are described first. Later the proposed

analysis of the planning graphs to identify properties present that intervene in the

classification is described.

5.1 Classification of Instances by Difficulty

According with computational complexity results, if the space required to solve an

instance grows, then it is expected that the time required to solved the instance also

grows. This result is used to guide the difficulty classification proposed in the present

work. From the extracted planning graphs, size properties are used to compare them

with the reported time of the planners and characterize the instance difficulty. The

increase in the solution time t is compared with the space needed to solve it s, where

the time t is expected to increase by some function f(s) = t, and that function can

be deduced through a regression. Also, from the regression, a prediction band is

calculated to include the possible values that fit within.

46
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Figure 5.1: Percentage of the instances with a graph extracted by competition.

For this classification, the instances from IPC of 1998 and 2000 are used, and

based on the competition results, all the instances are assigned to the following

classes: solved, extracted, and parallel. The solved factor determine if the instance

were solved by at least one planner. Then, such for all instances are given as input

to the Blackbox planner in order to extract their planning graphs, there are three

possible subsets: some instances are solved and their planning graph is extracted,

while others are not solved but with an incomplete graph extracted, and there are

some instances that could not be solved with blackbox and no planning graph were

extracted. Finally, for the set of solved instances with a graph fully extracted, there

are two kinds of graphs: whether the problem instance has parallel actions in its

plan and when it does not has parallel actions. The quantity of instances in each

set is shown in Figures 5.1, 5.2, and 5.3.

For the classification, are used the solved instances that have extracter its

planning graph, the instances without a graph extracted are not considered in the

present work. For instances without parallel actions, the number of levels is equal
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to the plan length, while the instances with parallel actions have less graph levels

than the plan length. This is differentiated in the classification, because this affects

the size of the graphs.

After the graph size measures are selected, the next step is the difficulty classi-

fication. The instances with values of time and size that are outside the regression or

out its prediction band are the outliers. They show a unexpected solved time com-

pared with its size. If the instance is above the prediction band, it is considered a

hard instance and if the instance in under the prediction band, it is an easy instance.

The size measure used for leveled graphs are quantity of nodes, edges, graph levels,

and density. Also the size of the mutex edges such as total mutex edges and mutex

density are included for their relation with the study of insolvable instances [4]. As

shown in Figures 5.4a, 5.4b, 5.13, and 5.5b in IPC 1998 the time correlated with all

measures for correlation test Kendall and Spearman, but for IPC 2000 there was low

value of correlation between time and factors compared with IPC 1998, specially for

density measures that do not correlate with a p-value greater than 0.05.
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Figure 5.4: Spearman and Kendall tests of the graph properties extracted from IPC 1998 in-

stances, the numbers in the cells are the ρ values.
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Figure 5.5: Spearman and Kendall tests of the graph properties extracted from IPC 1998 in-

stances, the numbers in the cells are the ρ values.

Each regression line is transformed using the Tukey ladder, to choose the trans-

formation that maximize the R2 value, and the regressions are filtered using the ones

that have a R2 value between 85% and 95%. Some examples are presented in Figures

5.6, 5.7, 5.8, and 5.9 where it is appreciated the regression bands and the outliers.

With the instance classifications there are 355 linear regression for each planner

in each competition: 245 in the parallel domain as shown in Figure 5.10a, and 110

in non-parallel domains as shown in Figure 5.10b. Not all regressions are significant

and some register a high quantity of outliers (low R2 value), so the regressions with

R2 values between 85% and 98% are chosen. With these values, 45 regressions from

the parallel domain and 20 regressions of the non parallel domain are used to perform

the classification.

Using the filtered regressions, the difficult classification of each instance is

defined through polls that use the classification of each model by domain and planner

to assign a difficulty vote for each instance. There are two polls, easy and hard poll.

The votes for the polls are calculated dividing the number of linear models ℓ where

an instance i is classified as an easy or hard outlier eiℓ between the total of the n

linear models considered in that domain. This score assignation have the issue that

some problems could have a tie in the difficulty scores as seen in Figure 5.11. To



Chapter 5. Proposed Solution 51

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Com: IPC2000 Planner: tokenplan R2 : 91.6

TN
−1

T
im

e
−

0
.8

f0−r2

f0−r0

f0−r1

f0−r2f0−r3f0−r4

f0−r0

f0−r2f0−r4

f0−r0f0−r2f0−r3l−2−3

s−4−0
s−4−1s−4−2
s−5−0

s−5−1

s−5−2

s−6−0
s−6−1s−6−2

IPC2000−logistics

IPC2000−freecell

IPC2000−elevator

(a) parallel domain

0e+00 1e+42 2e+42 3e+42 4e+42

0
e
+

0
0

1
e
−

2
0

2
e
−

2
0

3
e
−

2
0

4
e
−

2
0

5
e
−

2
0

Com: IPC2000 Planner: talplan R2 : 47.08

TN
10

T
im

e
−

1
0

−18−1−18−1

−18−1−18−1

IPC2000−logistics

IPC2000−freecell

(b) Parallel domain

Figure 5.6: Regression for time and total nodes of parallel instances of IPC 2000



Chapter 5. Proposed Solution 52

0.000 0.002 0.004 0.006 0.008

0
.0

0
0
0

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

0
.0

0
2
0

0
.0

0
2
5

0
.0

0
3
0

Com: IPC1998 Planner: stan R2 : 93.37

TN
−0.9

T
im

e
−

2

g−x−2

r−x−1

e−x−1

−x−10
−x−11

−x−12
−x−13

e−x−2

−x−21
−x−22

−x−23−x−24−x−25−x−26−x−27−x−28−x−29

e−x−3

−x−30

e−x−4

e−x−5

e−x−6e−x−7

e−x−8

e−x−9

e−x−2 r−x−2−x−13−x−19y−x−2r−x−3−x−27−x−30g−x−1

IPC1998−mystery

IPC1998−mprime

IPC1998−movie

IPC1998−logistics

IPC1998−gripper

(a) Parallel domain

0e+00 1e+08 2e+08 3e+08 4e+08

0
5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

Com: IPC1998 Planner: hsp R2 : 93.2

TN
2

T
im

e
0

.9

g−x−2

g−x−7

e−x−1−x−11−x−12−x−14−x−15−x−17−x−18−x−19e−x−2−x−20−x−21−x−22−x−23−x−25−x−26−x−27−x−28−x−29e−x−3−x−30e−x−4e−x−5e−x−8e−x−9−x−11

−x−12

−x−16

e−x−2

r−x−1
−x−26

−x−27

e−x−4
e−x−8

e−x−9r−x−2

y−x−2

r−x−3−x−27

−x−30

y−x−9

g−x−1

IPC1998−mystery

IPC1998−mprime

IPC1998−movie

IPC1998−logistics

IPC1998−gripper

(b) Parallel domain

Figure 5.7: Regression for time and total nodes of parallel instances of IPC 1998



Chapter 5. Proposed Solution 53

0.0e+00 5.0e+14 1.0e+15 1.5e+15 2.0e+15 2.5e+15

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

Com: IPC1998 Planner: hsp R2 : 94.92

TN
4

T
im

e
0

.6

−x−28 −x−17

IPC1998−mystery

IPC1998−mprime

(a) Parallel domain

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

0
.1

0
0
.1

5
0
.2

0
0
.2

5

Com: IPC1998 Planner: blackbox R2 : 94.98

TN
−1

T
im

e
−

0
.3

−x−17

−x−25

y−x−1

−x−11

−x−17

−x−25

−x−28

IPC1998−mystery

IPC1998−mprime

(b) Parallel domain

Figure 5.8: Regression for time and total nodes of non-parallel instances of IPC 1998



Chapter 5. Proposed Solution 54

2.5 3.0 3.5 4.0

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2

Com: IPC2000 Planner: mips R2 : 43.38

TE
0.1

T
im

e
−

0
.9

g−x−2

−10−1−12−0

−18−1

s−4−2s−5−0s−5−1s−5−2 s−6−2

s−8−0s−9−0s−9−1

e−2−1e−2−2
e−3−0e−3−1 e−3−2e−4−0e−4−1e−4−2e−5−0e−5−0e−5−0e−5−0e−5−1e−5−1e−5−1e−5−1e−6−0e−6−1e−6−2e−7−0e−7−1

IPC2000−schedule

IPC2000−logistics

IPC2000−freecell

(a) parallel domain

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
.0

2
0
.0

3
0
.0

4
0
.0

5

Com: IPC2000 Planner: grt R2 : 77.73

TE
0.8

T
im

e
−

0
.5

l−2−1

l−2−4

g−x−1

g−x−2

−18−1

IPC2000−logistics

IPC2000−freecell

IPC2000−elevator

(b) Parallel domain

Figure 5.9: Regression for time and total nodes of parallel instances of IPC 2000
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Figure 5.11: Score comparison of classified instances.

avoid this and to consider the kind of outlier, the distance between the instance

result and the prediction band is used to give more importance to the far outliers.

The distance score is calculated dividing the distance D(eiℓ) of the instance to the

prediction band of the linear model ℓ between the sum of all instance distances of

the linear model
∑m

j=0D(eij), in this way, far outliers have a high distance value and

near outliers have a low distance value. So, the multiplication of the distance score

with the difficulty score are used to calculate the classification as seen in Figure 5.12:

ESi =
1

n

n∑

l=0

eiℓD(eiℓ)∑m

j=0D(ejℓ)

HSi =
1

n

n∑

l=0

hiℓD(hiℓ)∑m

j=0D(hjℓ)
.

(5.1)

This methodology can classify an instance in four different classes: as Easy

instance if its easy score is greater than zero while its hard score is zero or its easy

score is greater than the 50% of its hard score, as a Hard instance if its hard score is

greater than zero while its easy score is zero or its hard score is grater than the 50%

of its easy score, as a fit instance if its hard and easy score are zero or both scores

are less than the value of 0.001, and as Not Classified if its easy and hard score are

less than the 50% of the other.
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5.2 Selection of Metrics

The metrics selection considers properties that measure the connectivity of the graph

through its level. In the graph plan structure, actions and fact nodes have mutually

exclusive edges (mutex edges) with other nodes of same type in its level. The fact

nodes have delete and out edges with the action nodes of its level, and the action

nodes have delete and out edges with the fact nodes of its next level, so the first

property selected is the percentage of mutex nodes (PME ). It measures for each

node the quantity of mutex nodes over the total number of nodes in a level. The

second one is the percentage of nodes that its out edges connects (POE ): it measures

for each node, the quantity of nodes that it connects over the total number of nodes

of the level. The third one is similar than the previous but with the delete edges

(PDE ) of the node. This metrics are chosen because are node based and they allow

to study its distribution over the levels of the graph. Level and graph-base metrics

are not considered.

Now that the metrics are chosen, over 600 graphs are measured for 10 million

nodes. Initially this was executed by a python script, but it used lot of resources

to store graphs structures in memory and calculate the metrics, so, the JSON files

with the graph structure were stored in MongoDB, a non-relational database. This

allows the use of map-reduce functions that analyze the nodes and that reduce the

time and memory needed to calculate the metrics, because the files are not fully

loaded in memory, instead they are read from disk and parallel processing is used to

calculate the measures.

The proposed metrics are focused on the distribution of the values over the

nodes. These distributions are analyzed to identify if some distribution parameter

is present or absent in any of the classifications. First the distribution of node

measurements is examinated by level and by node type: the red values represent the

action nodes and the blue values are from fact nodes, the horizontal axis represents
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the value of percentage of edges of the type analyzed and the vertical axis represents

the quantity of nodes in the level; the distributions on the left are from the first

levels of the graphs and the distributions on the right are from the last levels of the

graph; finally at bottom is the distribution of nodes by level.

Figures 5.14 and 5.15 show the measurements of a graph of the elevator domain

form the 2000 IPC that is classified as an easy instance with parallel actions, this

graph have 8 levels and its plan is of 16 steps. The POE measurement of the action

nodes have a constant value in all levels of 5% affecting the same percentage of fact

nodes. For the fact nodes, the values are spread between 3% and 13% for the first

levels but after the 4 level the values are constant near 1%. The PDE measurements

of the action nodes are near constant in 0% and 4%, meanwhile the values for the

fact nodes are in 0, 1.5 and 7%. The PME measurements the action nodes have

values at 0% and around 90% and the fact nodes have values of 0, 25, 60, and 80%.

Finally the growth rate of the graph through the levels is show in the last image,

the maximum number of nodes is 100 that is reached in level 4. This easy instance

graph show low values from POE, PDE for action and fact nodes, and for PME the

action and fact nodes have their values separated on two values; also this graph has

a fast growth rate.

Figures 5.16 and 5.17 show the measurements of a graph of the schedule domain

form the 2000 IPC that is classified as an regular instance with parallel actions, this

graph have 3 levels and its plan is of steps. The POE measurement of the action

nodes are near 0%. For the fact nodes the values are spread between 3% and 10%.

The PDE measurements of the action nodes are between in 0% and 1%meanwhile the

values for the fact nodes are spread between 0% and 3.1%. The PME measurements

the action nodes have their values distributed, starting between 0% and 25% and

finishing between 0% and 40%, and the fact nodes have their values at first level

near 0% and then get distributed between 0% and 20%. Finally, the growth rate of

the graph has a maximum number of nodes of 2,500 but this time its growth by level

is faster than the easy case. The instance classified as regular show more nodes by
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Figure 5.14: Exploratory analysis of instance elevator 2.
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Figure 5.15: Exploratory analysis of instance elevator 2.
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level in POE, PDE, PME for actions and fact nodes, and for PME the action and

fact nodes have distributed their values also this graph has a fast growth rate.

Figures 5.18 and 5.19 show the measurements of a graph of the mystery domain

form the 1998 IPC that is classified as an Hard instance with parallel actions, this

graph have 5 levels and its plan is of 16 steps. The POE measurement of the action

nodes are near 0%. For the fact nodes the values are spread between 0% and 20%.

The PDE measurements of the action nodes are also in 0% and 1% meanwhile the

values for the fact nodes are spread between 0% and 3%. The PME measurements

for the action nodes have its values also distributed, starting between 0% and 25%

and finishing between 0% and 60% and the fact nodes have its values at first level

near 0% and then get distributed between 0% and 20%. Finally in the growth rate

image of the graph the maximum number of nodes is 2600 but this time its growth

by level is bigger than the easy case. The graph for hard instance show more nodes

by level in POE, PDE, PME for actions and fact nodes, and for PME the action

and fact nodes have distributed their values also this graph have a fast growth rate

for the action nodes and the fact node remain almost the same.

Figures 5.20 and 5.21 show the measurements of a graph from the schedule

domain form the 2000 IPC that was not solved. This graph has three levels and its

plan is of 9 steps. The POE measurement of the action nodes are near 0%. For the

fact nodes the values are spread between 0% and 15%. The PDE measurements of

the action nodes are also in 0% and 1.5% meanwhile the values for the fact nodes

are spread between 0% and 3%. The PME measurements for the actions nodes have

their values also distributed, starting between 0% and 25% and finishing between

0% and 60%. The fact nodes have their values at first level near 0% and then

get distributed between 0% and 30%. Finally in the growth rate of the graph the

maximum number of nodes is 1,700, its growth by level is similar than the regular

case. This graph show similar quantity of nodes by level in POE, PDE, PME for

actions and fact nodes than the regular case. But the distribution of the PME action

and fact nodes are distributed in large intervals. Also this graph has a faster growth
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Figure 5.17: Exploratory analysis of instance schedule-7-0.
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Figure 5.18: Exploratory analysis of instance mystery 2.
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Figure 5.19: Exploratory analysis of instance mystery 2.
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rate for the action nodes and the fact node remain almost the same.

After the exploratory analysis, some properties of the measurements distri-

butions could be tested and is verified if they have some impact in the difficulty

classification for the solved instances, or with the unsolved instances. These proper-

ties are crossed with each type of node among the classifications and divided based

on the parallelism type of the graph. The properties to test in each measurement

are:

Mode: on the last level of the graph, the mode of the distribution of the percentage

of edges of the nodes.

Mode Percentage of Nodes: the percentage of nodes on the last level that have

the percentage of edges equal to the mode. This metric can reflect the modality

of the distribution: a mode with high percentage of nodes is uni-modal and a

mode with low percentage of nodes is more likely to be multi-modal.

Total Nodes: the quantity of nodes in the graph.

Total Nodes in Last Level: the quantity of nodes in the last level of the graph.

Growth Percentage: the number of times that the last level of the graph is bigger

than the first level.

Median Rate Growth: the quantity of nodes added after the first level until the

end divided by the number of levels in the graph.

Using these properties, some statistical tests are carried to identify if they are

factors in the suggested classification.
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Chapter 6

Experiments

In this chapter, the experiments used to find a relation between the difficulty of the

instances problems and the graph properties measured are described. The data and

tests used are presented followed by a discussion of the results.

6.1 Design of Experiments

The objective of the experimental design is to examinate possible relations between

the proposed difficulty measure and the proposed graph metrics based on the instance

classification. The Spearman and Kendall tests are used to measure the relation

between the measurements and the classification, but just the Spearman test are

discussed as the two result in almost the same values. Then, a median analysis is

used to analyze the variations among the classifications. The data is available in the

git repositoryof the present work.

Table 6.1 provides a summary of the data used: the number of total instances,

the number of solved and unsolved instances, the number of extracted graphs and

the number graphs with parallel and non-parallel actions.

Figures 6.1 and 6.2 show the Spearman tests between the measurements of the

action and fact nodes and the classified parallel instances. Measures related with the

70

https://github.com/ppGodel/StructuralCharacterizationOfPlanningProblems
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Table 6.1: Graph summary

IPC1998 IPC2000 Total

Competence Total 150 810 960

Graph Extracted 110 484 594

Graph Not Extracted 40 326 366

Solved 82 263 345

Not Solved 28 219 247

Classified 65 197 262

Not Classified 17 66 83

growth of the graph show similar correlations, where for instances with high growth

rates, a high quantity of nodes in the last level or in the total graph the instances

also increase. These instances are more likely to be unsolvable than the instances

with low growth rates and are more likely to solve. The growth percentage show a

low correlation for some classifications or it is discarted by its significance. For the

classified instances, they have low correlation values and weakly suggest a relation

among the classifications and the tested properties but all measures reinforce the

relation for the unsolved instances. For the measures of POE, PDE, and PME, the

values related to the mode of the distribution show that for high values of POE in

the action nodes, the instance is more likely to be solvable and for low values it is

more likely to be unsolvable. The mode of PDE and PME have a low correlation

value and low significance. Finally the percentage of nodes for POE, PDE, and PME

with the maximum node value are correlated, the low values are related with the

unsolved instances this means that the graphs with multi-modal distributions are

unsolvable while the graphs with one or two modes are more likely to be solvable.

Figures 6.3 and 6.4 show the Spearman tests between the measurements of

the action and fact nodes and the classified non-parallel instances. The correlation

values are similar as for the parallel instances, reinforcing the results of the instances

with parallel actions with difference in the mode values of the fact nodes where the
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Figure 6.1: Correlation test by Spearman method of the measurements on the action nodes with

parallel classified instances, the crossed cells are the ones that had a p-value > 0.05, the numbers

in the cells are the τ values.
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Figure 6.2: Correlation test by Spearman method of the measurements on the fact nodes with

parallel classified instances, the crossed cells are the ones that had a p-value > 0.05, the numbers

in the cells are the τ values.
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Figure 6.3: Correlation test by Spearman method of the measurements on the action nodes

with non-parallel classified instances, the crossed cells are the ones that had a p-value > 0.05, the

numbers in the cells are the τ values.

correlation values suggest that when the mode of the fact nodes is low for PDE and

PME, the instance is unsolvable and with high modes it is solvable.

6.2 Results

Based on the correlation results, the differences of the metrics with the classifica-

tions are identified. All the distributions are tested with ANOVA, but they are not

normaly distributed, so a Kruskal-Wallis test is done to corroborate if the medians

are equal. Later, a Dunn test is used to identify the differences.

Figures 6.5 and 6.6 show the comparison of the growth rate of the action nodes

in parallel instances. It is easy to see that the solved instances have a growth rates
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Figure 6.4: Correlation test by Spearman method of the measurements on the fact nodes with

non-parallel classified instances, the crossed cells are the ones that had a p-value > 0.05, the

numbers in the cells are the τ values.
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Figure 6.5: Comparison of the growth rate of action nodes value of the graphs among the instance

classification, Kruskal-Wallis p-value = 0.0001, Dunn’s p-value = 0.0001 for all classifications with

unsolved

below of 1000 nodes per level while the unsolved instances have growth rates above

than that. The grow rate of facts in non-parallel instances show a similar result but

with a fewer value of 125 nodes.

Figures 6.7 and 6.8 compare the percentage of nodes in the last level of the

graph with a percentage of mutex edges equals to the mode value among the clas-

sifications for parallel and non-parallel instances. The unsolved instances with a

low percentage show that multi-modal distributions of PME are more likely to be

unsolvable while the higher values that have few modes are more likely to be solvable.



Chapter 6. Experiments 77

500

1000

1500

2000

Easy Fit Hard Not classified Not solved

Difficulty Set

G
ro

w
th

 r
a
te

Figure 6.6: Comparison of the Growth Rate value of the graphs among the classification instances,

Kruskal-Wallis p-value = 0.0001, Dunn’s p-value = 0.0001 for all classifications with Not Solved
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Figure 6.7: Comparison of the percentage of nodes in the last level of a graph with its percentage

of mutex edges equals to the mode value of the distribution and the instance classification for

parallel instances, Kruskal-Wallis p-value = 0.0001, Dunn’s p-value = 0.0001 for all classifications

with unsolved
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Figure 6.8: Comparison of the percentage of nodes in the last level of a graph with its percentage

of mutex edges equals to the mode value of the distribution and the instance classification for non-

parallel instances, Kruskal-Wallis p-value = 0.0001, Dunn’s p-value = 0.0001 for all classifications

with unsolved except with hard that have a p-value = 0.01



Chapter 7

Conclusions

The present work proposes a classification method to distinguish among the solved

and unsolved instances using data from IPC results and the extracted planning

graphs. A set of tools was developed to obtain the planning graphs with modification

of the Blackbox planner. The use of data-mining techniques and a non-relational

database allow us to store, transform, and analyze the graph data in a fast and

efficient way. Finally, the results show that the metrics taken from the planning

graph can be used to differentiate between solved and unsolved instances. The

growth rates and the mode in the distribution of the edge percentage in the last

level of the graph are examples of metrics that identify the instance classification.

The introduction of additional features and the use of classification methods

often than others are of interest as future work, so as to help further differentiate

between the easy and the hard instances. Also additional and more complex graph

properties can be extracted and included into the set of structural characteristics
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