
Universidad Autónoma de Nuevo León

Facultad de Ingenieŕıa Mecánica y Eléctrica

Subdirección Académica

Case studies in feature extraction and

parameter tuning for time-series

classification

por

Pedro Sánchez Mart́ınez

como requisito parcial para obtener el grado de

INGENIERO EN TECNOLOGÍA DE SOFTWARE

Mayo 2019

Universidad Autónoma de Nuevo León

Facultad de Ingenieŕıa Mecánica y Eléctrica

Subdirección Académica

Case studies in feature extraction and

parameter tuning for time-series

classification

por

Pedro Sánchez Mart́ınez

como requisito parcial para obtener el grado de

INGENIERO EN TECNOLOGÍA DE SOFTWARE

Mayo 2019

Universidad Autónoma de Nuevo León

Facultad de Ingenieŕıa Mecánica y Eléctrica

Subdirección Académica

Los miembros del Comité de Tesis recomendamos que la Tesis “Case studies

in feature extraction and parameter tuning for time-series classification”, realizada

por el alumno Pedro Sánchez Mart́ınez, con número de matŕıcula 1590340, sea acep-

tada para su defensa como requisito parcial para obtener el grado de Ingeniero en

Tecnoloǵıa de Software.

El Comité de Tesis

Dra. Satu Elisa Schaeffer

Asesora

Dr. Romeo Sánchez Nigenda Dra. Sara Elena Garza Villarreal

Revisor Revisora

Vo. Bo.

Dr. Arnulfo Treviño Cubero

Subdirección Académica

San Nicolás de los Garza, Nuevo León, mayo 2019

Agradecimientos

Quiero agradecer a la Dra. Satu Elisa Schaeffer que no fue solo mi maestra a lo largo

de la carrera, también fue mi tutora y ejemplo a seguir. No solo me hizo mejorar

en ambito académico o profesional, sino también en crecimiento como persona en la

sociedad para contribuir y ayudar.

A mis padres Gloria Mart́ınez Argumedo y Fidencio Sánchez Perez: gracias por

su apoyo y educación que me brindaron para el progreso de mis estudios, siempre

dándome apoyo en las desveladas y desmotivaciones para salir adelante sin importar

que pase.

Al programa PAICYT de la UANL por la beca dentro del marco del proyecto

Herramientas computacionales para análisis epidemiológico multifactorial (IT512-

15).

Al Dr. Romeo Sánchez Nigenda y a la Dra. Sara Elena Garza Villarreal por

brindar su apoyo en la creación de esta investigación como integrantes de comité de

revisión, dando su punto de vista y consejos para la mejora del presente trabajo.

iv

Resumen

Pedro Sánchez Mart́ınez.

Candidato para obtener el grado de Ingeniero en Tecnoloǵıa de Software.

Universidad Autónoma de Nuevo León.

Facultad de Ingenieŕıa Mecánica y Eléctrica.

T́ıtulo del estudio: Case studies in feature extraction and parameter

tuning for time-series classification.

Número de páginas: 52.

Objetivos y método de estudio: En esta tesis se propone una herramienta

para seleccionar un modelo de aprendizaje supervisado para clasificar series de

tiempo y determinar el ajuste de parámetros que obtiene mejores resultados para

una tarea espećıfica, encontrando la mayor puntuación de precisión y el menor error

posible.

Las fases que realiza la herramienta son: preprocesamiento para dar un formato

estructurado a los datos, entrenamiento de un conjunto de algoritmos de aprendizaje

supervisado, aplicando un proceso de ajuste de parámetros para cada uno con el

fin de obtener un valor de precisión adecuada y finalmente análisis para reportar,

comparar y dar resultados obtenidos.

v

Resumen vi

Contribuciones y conclusiones: La presente tesis documenta el proceso de

entrenamiento de modelos de aprendizaje supervisado: limpieza de datos, proce-

samiento, clasificación, búsqueda de caracteŕısticas, cambios variados en los pará-

metros de los modelos de clasificación, los pronósticos a través de clasificación y una

medición de exactitud y error para pronosticar eventos desde intervalos de tiempo

anteriores con la finalidad de tomar desiciones preventivas.

La herramienta propuesta muestra una precisión adecuada para cada caso de

estudio; los cambios en los parámetros son reflejados en el desempeño obtenido.

Firma de la asesora:

Dra. Satu Elisa Schaeffer

Abstract

Pedro Sánchez Mart́ınez.

Candidate for obtaining the degree of Software Technology Engineer.

Universidad Autónoma de Nuevo León.

Facultad de Ingenieŕıa Mecánica y Eléctrica.

Title of study: Case studies in feature extraction and parameter tuning

for time-series classification.

Number of pages: 52.

Objectives and methods: This thesis proposes a tool to select a supervised

learning model to classify time series and determine the parameter setting that

obtains the best results for a specific task, finding the highest precision score and

the least possible error.

The phases that the tool performs are: preprocessing to give a structured

format to the data, training a set of supervised learning algorithms, applying a

process of adjustment of parameters for each one in order to obtain an adequate

precision value, and analysis to report and compare results obtained.

Contributions and conclusions: This thesis presents the training process of

supervised learning models: data cleaning, processing, classification, search for char-

vii

Abstract viii

acteristics, parameters set of the classification models, forecasts through classifica-

tion, and a measurement of accuracy and error to forecast events from previous time

intervals in order to take preventive decisions.

The proposed tool shows an adequate precision for each case study; the changes

in the parameters are reflected in the performance.

Signature of supervisor:

Dra. Satu Elisa Schaeffer

Contents

Agradecimientos iv

Resumen v

Abstract vii

1 Introduction 1

1.1 Motivation . 2

1.2 Hypothesis . 2

1.3 Objectives . 2

1.4 Structure . 3

2 Background 4

2.1 Probability and statistics . 4

2.1.1 Probability . 4

2.1.2 Statistics . 5

2.2 Time series . 6

ix

Contents x

2.3 Preprocessing . 9

2.4 Artificial intelligence . 10

3 Literature review 16

4 Proposed solution 20

4.1 Methodology . 20

4.1.1 Tools . 20

4.1.2 Data . 21

4.1.3 Phases . 23

4.2 Implementation . 25

5 Experiments 33

6 Conclusions 47

6.1 Discussion . 48

6.2 Contributions . 49

6.3 Future work . 49

Bibliography 50

List of Figures

2.1 Example of an increasing trend . 7

2.2 Example of seasonality for years . 7

2.3 Example of noise, with no trend and no seasonality 7

2.4 Example of a logistic function . 8

2.5 An ARIMA example, predicting values 8

2.6 Ordinary example, date as index . 8

2.7 Example of classifying data points using the iris dataset [8] 11

2.8 Example of predicting new data points in linear regression using the

iris dataset [8] . 12

2.9 An example of a multilayer perceptron 14

4.1 Example of time serie before preprocessing 24

4.2 Example of time serie after preprocessing 24

4.3 Code snippet for importing libraries 27

4.4 Code snippet for creating pipelines 27

4.5 Code snippet for gridsearch dictionaries 28

xi

List of Figures xii

4.6 Code snippet to generate pipeline . 28

4.7 Code snippet to get the best results for each model 28

4.8 Code snippet to execute pipeline . 29

4.9 Code snippet for pre-processing . 29

4.10 Code snippet for the purchases case study 30

4.11 Code snippet for the grades case study 31

4.12 Code snippet for diseases case . 31

4.13 Flow chart of the tool . 32

5.1 Grades case study . 41

5.2 Purchases case study . 43

5.3 Diseases case study . 45

List of Tables

3.1 Comparison of related literature. 19

4.1 Metadata of each dataset. 23

5.1 Confusion matrices for grades case. 35

5.2 Confusion matrices for purchases case. 36

5.3 Confusion matrices for diseases case. 37

5.4 Accuracies of the methods under different parameter configurations. . 38

5.5 MSE of the methods under different parameter configurations. 39

5.6 Performance of the classification methods for the grades case study

using homework slices of various lengths 40

5.7 Performance of the classification methods for the purchases case study

in terms of how many months ahead the forecast is made 44

5.8 Performance of the classification methods for the diseases case study

in terms of how many weeks ahead the forecast is made 46

xiii

Chapter 1

Introduction

Predicting possible events over time has always been of interest of humanity. Before

technology people already made predictions using their own intuition from routines,

developing and applying mathematics or statistics to have a scientific basis to support

them. Currently, using information technologies, one can quickly find patterns and

automate tests.

Information technologies such as computers and programming languages not

only help to automate calculations to make them faster, but also help to store large

volumes of information and, at the same time, new algorithms are created to store

more data. Not only the ability to save large volumes of information has been

improved: the hardware has improved multiprocessing allows for increasingly faster

calculations that would take weeks or months if done sequentially, but are done in

minutes with parallel computing.

There are new infrastructures such as the cloud and distributed systems that

provide access to data to multiple users working on the same information simulta-

neously. Artificial intelligence algorithms that could not be applied before, because

of the little progress in hardware, now can be used and explored to define and test

hypotheses.

This chapter presents a motivation for the problem studied in the thesis, a

1

Chapter 1. Introduction 2

hypothesis to examine with applied experiments in different cases, the objectives to

be accomplished, and, finally, the structuring of the chapters of the thesis with their

corresponding descriptions.

1.1 Motivation

Even with statistical methods, large errors are produced by not finding a feasible

precision to predict a time series, because the behavior at the series changes over

the time which makes it complicated to identify a pattern. Nowadays, the use of

artificial intelligence allows finding a pattern without having to manually search for

a relationship, association, or rules for a case.

1.2 Hypothesis

The hypothesis of this work is that it is possible to predict events using artificial

intelligence algorithms such as supervised learning for time series.

1.3 Objectives

In this thesis, a supervised learning tool is implemented to classify time series, to

predict future events with a feasible precision, and to find which algorithm works

best for each case. The specific objectives are:

• Extract features from time series.

• Classify time series depending in the case to predict future events for the model

with the best precision in terms of accuracy and error.

Chapter 1. Introduction 3

• Vary the configuration of the parameters to determine their effect on perfor-

mance.

1.4 Structure

Chapter 2 presents the fundamental concepts of the problems and algorithms used.

Chapter 3 describes related work, mentioning the important points of each one

and their objectives. Also, a descriptive analysis is given between the cited literature

and the present work.

Chapter 4 presents the technologies used with their descriptions and criteria

for why these were chosen: the techniques for extraction and processing of time

series, with a description of each together with snippets of code and a flow chart.

Chapter 5 describes the experiments, visualizing the results and comparing the

algorithms.

Finally, Chapter 6 presents the conclusions the results of the experiments in

comparison with the hypothesis and describes areas of opportunity for future work.

Chapter 2

Background

This chapter describes the concepts used in this research. In Section 2.1, the concepts

of probability and statistics, performed abstractly in the preprocessing of the data

and in the learning algorithms, are introduced, Section 2.2 describes the time series;

types and examples. Section 2.3 shows the different forms of preprocessing used

while Section 2.4 explains how to explore the parameters. And finally, Section 2.5

introduces artificial intelligence, explaining the type of learning, the purpose, and a

brief description of learning algorithms.

2.1 Probability and statistics

Probability and statistics [7] are two fields in mathematics that are the fundamental

artificial intelligence. They help to measure, estimate, and describe the used data.

2.1.1 Probability

Probability quantifies the possibility that an event happens among several possi-

bilities. It measures the frequency of a possibility that an event happens, usually

measured with continuous values 0 ≤ p ≤ 1, in percentages from 0% to 100%, or in

4

Chapter 2. Background 5

terms of fractions such as 1
4
, 1
2
, or 1. For example, the probability of obtaining a two

by throwing a die is 0.167 rounded to three decimal places, or 16.67%, or 1
6
.

2.1.2 Statistics

Statistics studies and analyzes data samples to describe or infer a certain phe-

nomenon in a random or conditional way. It is divided into two areas: descriptive

and inferential.

Descriptive statistics describe a data set by measurements of characteristics. In

a data set X with n elements, index starting at 1, some measures are: the minimum

that is the first element of the data ordered in ascending order, the maximum as the

largest element, the median is the element in the middle, and the mean that is the

average obtained by:

X̄ =

∑n
i=1X

n
, (2.1)

i.e., the sum of the elements divided by the number of elements. The variance is the

measurement of how far the data are from their average:

σ2 =

∑n
i=1 (X − X̄)

n
. (2.2)

Another measure is the standard deviation that measures the dispersion of the data:

σ =
√
σ2; (2.3)

this type of statistics is used to extract features from a time series, usually when the

range of the time series is large.

Inferential statistics is used for estimating, inferring, forecasting, or predicting

new points in time that have not been observed in a data set. These new points are

usually the answer to a question or hypothesis: numerical estimates used to choose

a certain action. In this work, this type of statistics is fundamental as learning

algorithms are based on it.

Chapter 2. Background 6

2.2 Time series

A time series is a set of data observed in an interval from a start to an end time.

The interval between of such measurements varies depending on the case; they can

be seconds, minutes, hours, weeks, months, years, seasons. Examples of real life

include:

• the amount of profit or loss in a business per week,

• the number of students approved in a semester, and

• the traffic on an avenue in the morning, afternoon or evening.

Some common statistical concepts to characterize a given time series include:

• Trend (Figure 2.1) is the way in which a series of time behaves, that is, de-

creases or increases.

• Seasonality (Figure 2.2) shows repetitions in periods in a lapse, an example is

the high temperatures in the summer season in the year.

• Noise (Figure 2.3) are data points that do not follow a trend or distribution.

• Movement or distribution (Figure 2.4) shows the behavior, for example: quadratic,

exponential.

Finally, time series are classified also in two types of models:

1. Models that represent currents values to predict past values or errors: Auto

Regressive Integrated Moving Average (ARIMA) models (Figure 2.5).

2. Models that help for a description of the data; these use time indices as hori-

zontal axis such as timestamps, dates or the order of a list. These are ordinary

models (Figure 2.6).

Chapter 2. Background 7

200

400

600

1950 1952 1954 1956

Time

P
a
s
s
e
n
g
e
rs

Figure 2.1: Example of an increasing trend

1.9

2.1

2.3

2.5

Q1 Q2 Q3 Q4

Season

P
ri

c
e

2010

2011

2012

2013

2014
year

Figure 2.2: Example of seasonality for years

−2

−1

0

1

0 10 20 30 40 50

Season

P
ri

c
e

Figure 2.3: Example of noise, with no trend and no seasonality

Chapter 2. Background 8

Figure 2.4: Example of a logistic function

200000

240000

280000

320000

0 10 20 30 40 50

Year

P
ri

c
e

Figure 2.5: An ARIMA example, predicting values

200000

225000

250000

275000

300000

325000

1970 1980 1990 2000 2010

Year

P
ri

c
e

Figure 2.6: Ordinary example, date as index

Chapter 2. Background 9

2.3 Preprocessing

Preprocessing is a stage where the data is cleaned, normalized, and filled. Features

are extracted and the relevant ones are selected.

Data cleaning is the process where the missing values are cleaned. These values

are missing either because a user did not enter data, there was a failure in the

moment of entering it, or they are not contemplated. The missing data are cleaned

by filling them with an average or an extrapolation according to how the information

is distributed in an instance. There are also cases where an entire instance contains

missing data; these instances are ignored.

Transformation of data is the process where important features [Grandell, 1998]

are obtained from a transformation formula. Two examples used in this thesis are:

• Discrete Fourier Transform (DTF) [Bloomfield, 2004] Fourier analysis

describes a function as a sum of components and recovers them. When the

function and its transform are discretely separated, it is called a discrete Fourier

transform. In other words, it separates the inputs into components that create

discrete frequencies. The output is called a spectrum or transform, and it is in

the frequency domain. It is defined by a set N of complex numbers X1, . . . , XN

is transformed by:

Xk =
N∑
n=1

Xne
− 2πi

N
kn, (2.4)

where i is an imaginary unit and e
2πi
N is the root of unit.

• Discrete Wavelet Transform (DWT) [Shensa, 1992] removes noise and

compresses signals and images. These are wavelet transformations in a discrete

way: oscillations with an amplitude that starts from zero, grows, and decreases

to zero. Its advantage over Fourier transforms is the location in real space.

Normalization is the process of scaling a set of data so that a learning algorithm

Chapter 2. Background 10

improves in its processing times. These algorithms tend to have poor behavior in

results and time if the input values are not scaled. In this case, the standardization

used based on the standard deviation for each feature:

X ′ =
X − X̄
σ

. (2.5)

Finally, it is common to extract important features to reduce the size of each

instance by applying dimensions reduction algorithms. These contain information

of the originals. An example is to obtain statistics such as minimum, maximum,

average, standard deviation, or variance. On the other hand, there are unsuper-

vised learning algorithms such as principal component analysis (PCA), a dimension

reduction algorithm using the decomposition of singular values. It is based on the

decomposition of eigenvalues of a covariance matrix, which is calculated by:

cov(X) =
XᵀX

n− 1
, (2.6)

cov(X)pa = λapa, (2.7)
m∑
a=1

λa = 1. (2.8)

The eigenvalues are vectors that when multiplied by the operator give a scalar mul-

tiple of themselves:

Av = cv, (2.9)

v 6= 0, c ∈ R, (2.10)

The projections of X in pa measure captured variance on these vectors and ta rep-

resents scores that contain information on how the information is related then have

the property of being orthogonal that is a generalization of perpendicularity.

2.4 Artificial intelligence

The objective of artificial intelligence (AI) [Russell and Norvig, 2003] is to give

a computer the ability to learn from conditions for a certain task to save time,

resources, or discover behaviors.

Chapter 2. Background 11

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8

Sepal.Length

S
e
p
a
l.
W

id
th Species

setosa

versicolor

virginica

Figure 2.7: Example of classifying data points using the iris dataset [8]

Machine learning (ML) [Mitchell, 1997] gives machines the ability to learn

without being granted a function or rules. It detects patterns in data. The machine

learning algorithms are divided are supervised, unsupervised.

Supervised learning [Cunningham et al., 2008] focuses on learning to find an

output which learns because a target is provided previously, this type of learning is

divided into classification and regression algorithms.

Classification is the process of joining instances with similar characteristics

(Figure 2.7). Regression is the process of predicting new values a sequence of data;

this is learned from the input and output data provided to find a function that fits

(Figure 2.8).

Unsupervised learning aims to group data into n groups that have similar fea-

tures; this means the instances do not have a label which explains in which group it

belongs. It is also possible to find similarities in sequences of tasks in order to find

repetitive behavior. Another of its applications are to remove elements out of the

ordinary that does not follow a trend to that of others.

Chapter 2. Background 12

Figure 2.8: Example of predicting new data points in linear regression using the iris

dataset [8]

Semi-supervised learning [Chapelle et al., 2010] uses both tagged and untagged

data, the amount of tagged data is usually a small fraction of the data set in order to

noticeably improve learning accuracy and reduce the time costs of tagging instances.

This thesis focuses partially on semi-supervised learning, given that the outputs

are obtained from certain rules depending in a criteria in Chapter 4.

Logistic Regression [Harrell, 2001] is a classification algorithm used to assign

instances of a data set to a discrete set of classes. It transforms its output using

a logistic sigmoid function to calculate a probability value that will be assigned to

two or more classes. The sigmoid function is an activation function. that assigns

probabilistic values to real values between 0 to 1:

S(z) =
1

1 + ex
, (2.11)

where S(z) is a probability between 0 and 1, z is an activation function and e is a

base of natural log. New values are predicted with:

y = wx+ b, (2.12)

Chapter 2. Background 13

where y is the result, w is the weight, and b the bias. Aiming to reduce the loss

function is calculated by:

L(θ) = − 1

m

m∑
i=1

[y(1) log(hθ(x
(i))) + (1− y(i)) log(1− hθ(x(i)))]; (2.13)

if y = 0, the first side cancels out, and if y = 1 the second side cancels out, so there

are two separate loss functions for each solution:

L(hθ(x), y) = − log(hθ(x)) (2.14)

if y = 1, and

L(hθ(x), y) = − log(1− hθ(x)) (2.15)

if y = 0. Once the probabilities are obtained, 1 or 0 is assigned based on the following

conditions:

p ≥ 0.5, y = 1, (2.16)

p ≤ 0.5, y = 0. (2.17)

This algorithm uses gradient descent used to iteratively minimize the loss function.

The loss function seeks to find the weight and bias values, that is, from the derivative

of the sigmoid function:

s′(z) = s(z)(1− s(z)). (2.18)

Multilayer Perceptron (MLP) [Kruse et al., 2016] is an algorithm that

learns an approximate non-linear function for any classification or regression. It is

different from to the logistic regression because here there are hidden abilities which

allow learning non-linear models. To classify, a logistic function is used to obtain

values between 0 and 1. If there are more than two classes, the output layer is a

vector of n classes, and instead of passing a logistic function

g(x) =
1

(1 + e−z)
, (2.19)

the softmax function given by

s(z)i =
exp(zi)∑k
i=1 exp(zi)

, (2.20)

Chapter 2. Background 14

input layer

hidden layer hidden layer 2

output layer

Figure 2.9: An example of a multilayer perceptron

is used, where zi is the i class and k is the number of classes. Having a vector that

contains the results in probabilities for each one, the element with the highest prob-

ability is the output. Although the algorithm is very similar to logistic regression,

other changes are:

• in each layer, the sum of the weights is calculated, after that it goes to an

activation function;

• the loss is calculated in the output layer;

• in the hidden layers, its respective error is calculated to then update its values

for each iteration;

• the accumulated error is calculated as measurement metric of the whole model.

Support Vector Machine (SVM) [Cortes and Vapnik, 1995] creates hy-

perplanes in a finite set of dimensions, which makes it possible to classify using these

hyperplanes depending on the distance closest to the points of each instance. The

way SVM separates the data points is by kernel functions, splitting the dimensions

in the space. Common kernel functions are:

Chapter 2. Background 15

• linear using (x, x′),

• polynomial (γ(x, x′) + r)d, and

• sigmoid (tanh(γ(x, x′) + r)).

Random Forest [Breiman, 2001] is a heuristic learning algorithm based on

taking multiple decision trees with different characteristics such as number of nodes

or depth of leaves. It allows a greater exploration in obtaining ideal parameters

to obtain a good performance. These sets of trees search for a different solution

independently, which allows parallelizing for greater exploration with a feasible time.

The most common parameters to explore are the quantities of trees to be explored

and the number of characteristics.

Chapter 3

Literature review

This chapter presents a summary of literature related to this thesis. This set of

works presents different ways of processing the structuring and processing of a data

set. Also, each of these presents different criteria depending on the problem to be

solved. They also propose different ways of training a learning model.

Geurts [2001] proposes using classifiers such as Decision Trees, Naive Bayes and

Boosting algorithms to find patterns in time series which are not recognizable to the

single view or do not follow a pattern. This work solves problems from different

sources to make a comparison between these algorithms in terms of accuracy.

Marti et al. [2016] propose using statistical methods to correlate financial time

series windows, the objective of this research is to find feasible window sizes and to

do an unsupervised training to group financial sources that have similar behaviors. It

aims to find distributions from these correlations that adapt to the greatest number

of sources.

Xiong and Yeung [2002] propose to create a combination of coefficients by

grouping different models and sources to find parameters that generally work for

any problem. The number of groups is calculated by minimizing the distances of

each instance with a group with similar characteristics.

16

Chapter 3. Literature review 17

Ratanamahatana and Keogh [2004] focus on finding better solutions using Dy-

namic Time Warping (DTW) instead of the Euclidean distance for classification or

clustering tasks. These two techniques are used to measure accuracy in the results

when grouping instances with the same characteristics.

Liao [2005] provides a summary of algorithms for unsupervised learning, dis-

cussing selection and extraction of parameters by similar characteristics with greater

impact in improving accuracy or by reducing parameters for large data set, and ex-

plains results of grouping algorithms, using different systems to minimize distances

between the centroids of each group with their instances.

Wei and Keogh [2006] focus on classifying instances in large data sets where

classes or categories were not provided. This is semi-supervised learning: general

rules are set for time series with expected results or use grouping learning algorithms

to group instances without category with those that have better similar character-

istics with instances with a category already planned.

The related works apply different methods of feature extraction and data pro-

cessing. We determined for each work the presence or absence of techniques and

phases relevant to our proposed tool:

• Transformation: whether the data is transformed or scaled.

• Features extraction: whether feature extraction is applied.

• Statistical clustering: whether statistical clustering takes place.

• Supervised learning: whether pre-labeled training inputs are used.

• Unsupervised learning: whether learning is done without pre-labeled train-

ing data.

• Semi-supervised learning: whether only a small fraction of the training

data is labeled.

Chapter 3. Literature review 18

• Hyperparameter: whether parameter adjustment is carried out.

• Pipeline: whether multiple algorithms are compared.

• Multi-sources: whether different types of time series (such as financial, med-

ical, weather) are considered.

Table 3.1 shows a comparison between the cited works; most use a specific

algorithm for a unique dataset. Also, most use machine learning methodologies

(supervised and unsupervised), using a fixed parameter configuration for each one.

Only two explore multiple algorithms. When it comes to supervised learning meth-

ods, Geurts [2001] as well as Ratanamahatana and Keogh [2004] work with multiples

algorithms and metrics to identify the best one for a particular problem, whereas

Xiong and Yeung [2002] implement unsupervised learning algorithm to cluster and

finding the best number of classes. Wei and Keogh [2006] label the data using

semi-supervised learning while Liao [2005] applies both supervised and unsupervised

learning algorithms.

The advantage of this work is the use of a search of the best parameters with a

set of ranges and those that better adjust to the focused problem, the minimization

of characteristics using preprocessing of time series to scale them and then using

their statistics which provides improvement in time performance, and finally finding

the best learning model for each type of case and one in general that can provide a

feasible accuracy.

Chapter 3. Literature review 19

Table 3.1: Comparison of related literature.

Work/Feature T
ra

n
sf

or
m

at
io

n

F
ea

tu
re

ex
tr

ac
ti

on

S
ta

ti
st

ic
al

le
ar

n
in

g

S
u
p

er
v
is

ed
le

ar
n
in

g

U
n
su

p
er

v
is

ed
le

ar
n
in

g

S
em

i-
su

p
er

v
is

ed
le

ar
n
in

g

H
y
p

er
p
ar

am
te

r

P
ip

el
in

e

M
u
lt

i-
so

u
rc

e

Geurts [2001] 3 3 7 3 7 7 7 3 3

Xiong and Yeung [2002] 3 3 7 7 3 7 3 7 3

Ratanamahatana and Keogh [2004] 3 3 7 3 7 7 3 3 3

Liao [2005] 3 7 7 3 3 3 7 3 7

Wei and Keogh [2006] 3 7 7 7 7 3 3 3 7

Marti et al. [2016] 3 7 3 7 7 7 3 3 7

Present work 3 3 7 3 7 7 3 3 3

3 Implemented — 7 Not implemented

Chapter 4

Proposed solution

This chapter describes the proposed solution for the problem of time-series classifi-

cation: the methodology, the tools (programming languages, open-source libraries,

and additional software), the input data used and their formats, and finally the

implementation. The code, data, and plots of the present project are found in the

Github repository: https://github.com/pedrosanzmtz/TimeSeriesClustering.

4.1 Methodology

This section explains the software development process, the procedures, techniques,

tools, and development phases with the purpose of providing an outline of the solu-

tion proposed in this research.

4.1.1 Tools

The tools used in this research are:

• Python 3.4.5 https://www.python.org/ is an interpreted high-level pro-

gramming language for general-purpose programming with a set of open-sources

20

https://github.com/pedrosanzmtz/TimeSeriesClustering
https://www.python.org/

Chapter 4. Proposed solution 21

libraries specially for statistics, cleaning, manipulate data, and data mining.

• Numpy 1.11.3 http://www.numpy.org/ is a library for the Python pro-

gramming language, providing support for large, multi-dimensional arrays and

matrices, as well as high-level mathematical functions to operate on such struc-

tures.

• Scipy 0.18.1 https://www.scipy.org/ is an open-source Python library

used for scientific computing and technical computing.

• Scikit-learn 0.18.1 https://scikit-learn.org/ is a machine-learning and

data-mining module for Python that is distributed under the BSD license.

• PyWavelets 1.0.1 https://pywavelets.readthedocs.io/ provides an open-

source implementation of the wavelet transform for Python.

4.1.2 Data

All of our input data is stored in Comma-Separated Values (CSV) files, where each

row represents a single time-series instance from an initial time to a final time; non-

available null data are indicated by a special character string. The metadata of each

dataset is in Table 4.1.

The three data sets of our case studies are:

• Purchases that includes client transactions in terms of the number of pur-

chased and consumed unitary services per month; the purpose is to identify

ahead of time which clients will be lost, i.e., cease making purchases. This is

a binary classification because the output is lost or retaines, the features used

here are the number of purchases for client from January 2014 to March 2017

with a total number of 1909 records. In this case study the range of dates was

reduced by three months at the beginning and at the end because most of the

http://www.numpy.org/
https://www.scipy.org/
https://scikit-learn.org/
https://pywavelets.readthedocs.io/

Chapter 4. Proposed solution 22

customers started at this date and others where just starting at the end of this

dataset.

• Grades that includes grades obtained by students in distinct activities through-

out a semester; the purpose is identify ahead of time which students will obtain

a passing grade. This is a multilabel classification problem because the class is

the opportunity where the student gets to obtain a passing grade or not at all,

this is: first or second opportunity. The data contains seven columns where

five are the scores in the homeworks in order from one to five, the sixth column

is the score in the mid term exam and the last column is the class to predict:

1 for passing at the first opportunity, 2 for passing at the second opportunity,

and 3 for not passing. This class depends on the final score on the student with

the final project and the final exam, which are not included for training. The

total number of records is 244 which is the number of students from semesters

from January 2016 to December 2017.

• Diseases includes data from the web page: http://www.epidemiologia.

salud.gob.mx/anuario/html/anuarios.html which reports epidemiological

diseases per week for men and women for the 52 states of México. This case

study is a binary classification for diseases transmitted via respiratory and via

midge picket. From this web page, these data were extracted from the year

2008 to the year 2013. The diseases are: Zika, Shikungunya, Hemorrhagic

Dengue, and Classic Dengue: These four diseases are transmitted by means

of a mosquito through a picket, these diseases were classified as midge. The

diseases classified as respiratory include Influenza virus, Acute Respiratory

Influenza virus, and Pneumonias: these diseases were extracted from 2014 to

2017 for the states of Nuevo León, Tamulipas, Coahuila, and the federal total.

Because in the data respiratory diseases does not include all states and is not

separated as gender, these are not included as features. The total number of

records is 4900, which includes the number of cases reported for 13 weeks as

columns, these 13 weeks are a season of the year, given that each case behaves

http://www.epidemiologia.salud.gob.mx/anuario/html/anuarios.html
http://www.epidemiologia.salud.gob.mx/anuario/html/anuarios.html

Chapter 4. Proposed solution 23

Table 4.1: Metadata of each dataset.

Case Instances Attributes Classes

Purchases 1909 162 2

Grades 244 7 3

Diseases 4900 13 2

differently in each season.

4.1.3 Phases

In this section it is discussed how the data is processed before it is classified using

the machine learning algorithms to get a feasible performance in time and accuracy.

4.1.3.1 Pre-processing

Data pre-processing [Hand, 2007] is a data-mining technique to transform raw input

data into a format understandable by latter processing phases. Real-world data

is usually incomplete, possibly inconsistent, and may also lack certain behaviors or

trends; additionally it is quite likely to contain errors. The purpose of pre-processing

is to minimize the impact of such issues in the output. Figure 4.1 shows a time serie

before preprocessing and Figure 4.2 after; the differences are the discretited and

scaled values.

• Fill missing values, consisting in the transformation of missing values

[Gómez et al., 1992] with a consistent option

– fill with a zero,

– fill with the mean,

– fill with the median, or

Chapter 4. Proposed solution 24

0 5 10 15 20 25 30 35 40

−4000

−2000

0

2000

4000

Figure 4.1: Example of time serie before preprocessing

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
−4

−3

−2

−1

0

1

2

3

4

Figure 4.2: Example of time serie after preprocessing

Chapter 4. Proposed solution 25

– fill with the most frequent value.

• Scaling , meaning the standardization Boeva and Tsiporkova [2010] of data

(a rather common requirement for machine-learning algorithm that can be-

have poorly if any individual feature does not approximately follow a standard

normal distribution (that is, Gaussian with zero mean and unit variance).

4.1.3.2 Feature extraction

Feature extraction [Guyon and Elisseeff, 2006] is the transformation of data into a set

of characteristics. The purpose is to extract important characteristics and minimize

the the number of them.

To simplify the components obtained in feature extraction, basic statistics

are used descriptors of their distributions: minimum, maximum, variance, mean,

skewness, and kurtosis.

Another step is to remove one slice of time, represented by a unit of time or

period such as semester, season, day, week, or month. The purpose of removing

time periods is for exploring the accuracy depending in the size of attributes; this

provides knowledge to choose which period of time use to predict an event.

4.2 Implementation

This subsection explains the most relevant snippets of Python code: importing li-

braries, reading and pre-processing the input, and classifying the time series.

• The code snippet 4.3 shows the modules used in the project, these imports

are in the pipelinegridesearch.py script which create pipelines and contains the

logic for the learning part.

Chapter 4. Proposed solution 26

• The code snippet 4.4 shows the structure of each model, this is by creating

a dictionary (just a hashmap) which contains the object for each model, the

random state which is used to reproduce the same results each running time

and the standard scaler object which makes de scaling in automatic.

• The code snippet 4.5 returns a dictionary search objects which contain the

parameters to iterate over each model.

• The code snippet 4.6 generates pipelines with the parameters and structure

for each model.

• The code snippet 4.7 retrieves the best results found for each model, and the

best parameters used for those results.

• The code snippet 4.8 calls the function to init the pipeline and gridsearch

dictionaries, then starts training the models and saves the results in csv files.

• The code snippet 4.9 replaces NA values for the mean in each instance, then

transforms the data using DWT, then finally returns the summary of each

record.

• The code snippet 4.10 contains the main function for the purchases case where

gets the data from the CSV file, then calls the function get data() which re-

moves the first 3 months and the last 3 months, this is to ensure that almost

all the clients started at the same date and also finished. The function also

split the features columns X and the class y and return them.

• The code snippet 4.11 contains the main function which initializes the inputs

to save the data, calls the get data() function thats splits the columns into

features X and the columns y classes, the y value has three values to specify

which opportunity the student passed the subject. The main function iterates

over from the second homework until the last homework.

• The code snippet 4.12 contains the main function for the diseases case that

initializes the variables used and calls the get data() function which removes

Chapter 4. Proposed solution 27

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.externals import joblib
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import Imputer
from sklearn import svm
from sklearn.metrics import mean_squared_error
from pprint import pprint
import numpy as np
import pandas as pd
from time import time
from scipy import stats
import pywt

Figure 4.3: Code snippet for importing libraries

def get_pipes(random_state):
pipes = dict()
pipes["lr"] = Pipeline ([(’scl’, StandardScaler ()),

(’clf’, LogisticRegression(random_state=random_state))])

pipes["rf"] = Pipeline ([(’scl’, StandardScaler ()),
(’clf’, RandomForestClassifier(random_state=random_state))])

pipes["svm"] = Pipeline ([(’scl’, StandardScaler ()),
(’clf’, svm.SVC(random_state=random_state))])

pipes["mlp"] = Pipeline ([(’scl’, StandardScaler ()),
(’clf’, MLPClassifier(random_state=random_state))])

return pipes

Figure 4.4: Code snippet for creating pipelines

records with all values are NA or 0 and return the X and y values. The main

function iterates over six weeks, this because a disease can take at least a

month to present symptoms.

Chapter 4. Proposed solution 28

def get_grids ():
grids = dict()
grids["lr"] = [{’clf__penalty ’: [’l2’],

’clf__C ’: [0.3, 0.5, 1],
’clf__solver ’: [’lbfgs’, ’newton -cg’]}]

grids["rf"] = [{’clf__criterion ’: [’gini’, ’entropy ’],
’clf__n_estimators ’: [10, 20, 30]}]

grids["svm"] = [{’clf__kernel ’: [’sigmoid ’, ’rbf’],
’clf__C ’: [0.3, 0.5, 1]}]

grids["mlp"] = [{’clf__activation ’: [’logistic ’, ’relu’],
’clf__solver ’: [’sgd’, ’adam’],
’clf__hidden_layer_sizes ’: [(10,), (10, 5)]}]

return grids

Figure 4.5: Code snippet for gridsearch dictionaries

def generate_pipeline(cv, jobs=-1, random_state =42):
Construct some pipelines
pipes = get_pipes(random_state)
grids = get_grids ()

Construct grid searches
gs_lr = GridSearchCV(estimator=pipes["lr"],

param_grid=grids["lr"],
scoring=’accuracy ’,
cv=cv)

gs_rf = GridSearchCV(estimator=pipes["rf"],
param_grid=grids["rf"],
scoring=’accuracy ’,
cv=cv,
n_jobs=jobs)

gs_svm = GridSearchCV(estimator=pipes["svm"],
param_grid=grids["svm"],
scoring=’accuracy ’,
cv=cv,
n_jobs=jobs)

gs_mlp = GridSearchCV(estimator=pipes["mlp"],
param_grid=grids["mlp"],
scoring=’accuracy ’,
cv=cv)

List of pipelines for ease of iteration
grids = [gs_lr , gs_rf , gs_svm , gs_mlp]
Dictionary of pipelines and classifier types for ease of reference
grid_dict = {0: ’LR’,

1: ’RF’,
2: ’SVM’,s
3: ’MLP’}

return (grids , grid_dict)

Figure 4.6: Code snippet to generate pipeline

def get_results(means , stds , gs, gs_out):
for mean , std , params in zip(means , stds , gs.cv_results_[’params ’]):

print("%0.3f (+/ -%0.03f) for %r" % (mean , std * 2, params))
for p in params:

gs_out.write(str(params[p]) + ’,’)
gs_out.write(str(mean) + ’\n’)

gs_out.close()

Figure 4.7: Code snippet to get the best results for each model

Chapter 4. Proposed solution 29

def run_pipeline(X, y, cv , out , sub , name):
Fit the grid search objects
(grids , grid_dict) = generate_pipeline(cv , jobs=-1,

random_state =42)
X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size =0.33, random_state =42)
y_test = y_test.values
print(’Performing model optimizations ...’)
best_acc = 0.0
best_clf = 0
best_gs = ’’
for idx , gs in enumerate(grids):

initial_time = time()
gs_out_name = grid_dict[idx] + ’_’ + name + ’.csv’
gs_out = open(gs_out_name , ’w’)
gs_out_count_name = "count_" + gs_out_name
gs_out_count = open(gs_out_count_name , "w")
print(’\nEstimator: %s’ % grid_dict[idx])
Fit grid search
toi = time()
gs.fit(X_train , y_train)
tof = time() - toi
Best params
print(’Params Test:’)
means = gs.cv_results_[’mean_test_score ’]
stds = gs.cv_results_[’std_test_score ’]

get_results(means , stds , gs, gs_out)

print(’Best params: %s’ % gs.best_params_)
Best training data accuracy
print(’Best training accuracy: %.3f’ % gs.best_score_)
Predict on test data with best params
y_pred = gs.predict(X_test)

count_results(gs_out_count , y_pred , y_test)

Test data accuracy of model with best params
acc = ’%.2f’ % accuracy_score(y_test , y_pred)
mse = ’%.3f’ % mean_squared_error(y_test , y_pred)
total = str(y_test.shape [0])
acc_n = str(int(y_test.shape [0] * float(acc)))
total_time = ’%.2f’ % (time() - initial_time)
print(’Test set accuracy score for best params:’, acc)
print(’Test set mse score for best params:’, mse)
print(’Total time:’, total_time)
Track best (highest test accuracy) model
out.write(grid_dict[idx] + ’,’ + sub + ’,’ + acc + ’,’
+ mse + ’,’ + total_time + ’\n’)

Figure 4.8: Code snippet to execute pipeline

def preprocess(X, na_values):
imp = Imputer(missing_values=na_values , strategy=’mean’, axis =1)
imp.fit(X)
X = imp.transform(X)
X, _ = pywt.dwt(X, ’db1’)
X_stats = stats.describe(X, axis =1)
X = pd.DataFrame ({’min’: X_stats.minmax [0],

’max’: X_stats.minmax [1],
’kurtosis ’: X_stats.kurtosis ,
’skwness ’: X_stats.skewness ,
’variance ’: X_stats.variance ,
’mean’: X_stats.mean})

return X

Figure 4.9: Code snippet for pre-processing

Chapter 4. Proposed solution 30

import pandas as pd
import numpy as np
from pipeline_gridsearch import *

def get_data ():
df = pd.read_csv(’inventariosActivos.csv’, index_col=0, na_values =[’NaN’, ’NA’])
Remove client column
df = df.drop([’client ’], axis =1)

X = df.iloc[:, :-1]
y = df.iloc[:, -1]

Remove first 3 months and last 3 months
X = X.iloc[:, 3:-3]

X = X.dropna(how=’all’, axis =0)
return X, y

def main ():
X, y = get_data ()

na_index = X.isnull (). all(axis =1)

out = open(’inventories_performance.csv’, ’w’)
out.write(’model ,slice ,acc ,mse ,time\n’)

n_months = 6
name = ’inventories ’
na_values = np.nan

for i in range(1, n_months + 1):
sub = str(i) + ’M’
sub_X = X.iloc[:, :-i]
sub_X = sub_X.dropna(how=’all’, axis =0)
indx = sub_X.index
sub_y = y[indx]
sub_X = preprocess(sub_X , na_values)
run_pipeline(sub_X , sub_y , 10, out , sub , name)

out.close()

Figure 4.10: Code snippet for the purchases case study

Chapter 4. Proposed solution 31

from sklearn import preprocessing
import pandas as pd
import numpy as np
from pipeline_gridsearch import *

def get_data ():
df = pd.read_csv(’grades.csv’)
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
return X, y

def main ():
X, y = get_data ()
out = open(’grades_performance.csv’, ’w’)
out.write(’model ,slice ,acc ,mse ,time\n’)

name = ’grades ’
na_values = ’NaN’

for i in range(2, 6):
cols = [’c1’, ’mc’]
sub = str(i) + "H"
for j in range(2, i+1):

cols.append(’c’ + str(j))
sub_X = preprocess(X[cols], na_values)
run_pipeline(sub_X , y, 10, out , sub , name)

out.close()

Figure 4.11: Code snippet for the grades case study

from sklearn import preprocessing
import pandas as pd
import numpy as np
from pipeline_gridsearch import *

def get_data ():
df = pd.read_csv("diseases.csv")
X = df.iloc[:, :-1]
X_true = X.sum(axis =1) > 0
X = X[X_true]
le = preprocessing.LabelEncoder ()
y = pd.Series(le.fit(df[’class ’]). transform(df[’class ’]))
y = y[X_true]
return X, y

def main ():
X, y = get_data ()
out = open(’diseases_performance.csv’, ’w’)
out.write(’model ,slice ,acc ,mse ,time\n’)
n_weeks = 6
name = ’diseases ’
na_values = np.nan
for i in range(1, n_weeks + 1):

sub = str(i) + ’W’
sub_X = X.iloc[:, :-i]
sub_X = sub_X.dropna(how=’all’, axis =0)
indx = sub_X.index
sub_y = y[indx]
print("subX shape:", sub_X.shape)
print("suby shape:", y.shape)
sub_X = preprocess(sub_X , na_values)
run_pipeline(sub_X , sub_y , 10, out , sub , name)

Figure 4.12: Code snippet for diseases case

Chapter 4. Proposed solution 32

Start

Read data

Prepro

data

Init model

Init

params

Update

model

Update

params

Best

params?

Best

model?

Stop

yes

no

no

yes

Figure 4.13: Flow chart of tool; each block is a subroutine that can be used to train

multiples classifiers with different data sources.

Chapter 5

Experiments

The purpose of computational experiments is to assess the performance of a pro-

posed solution and the impact of any potential configurations on that performance.

Experimental design [Montgomery, 2006] aims at an experimental setup that pro-

duces objective and valid conclusions. It is also important to ensure that the results

of the experiments will permit the validation or rejection of the hypothesis. For the

problem at hand, the next experiment is necessary: a classification test to verify

whether an algorithm obtains the correct class to each instance of input data and

compute the accuracy and MSE of the method.

As the distribution of the input data depends on its origin and the amount

of data in each case study varies, a different method and/or a different parameter

configuration may be the best of option for one than for the other.

To evaluate the accuracy and MSE of each classifier in each of the three case

studies, we prepared statistical reports and visualizations for each.

The performance of each algorithms depends on the parameter configuration;

the values of the parameters were chosen with the methods provided by the scikit-

learn package so that the results were feasible using the mean of a cross validation

of ten iterations.

33

Chapter 5. Experiments 34

For logistic regression, two parameters were tuned: C which is the inverse

of regularization strength (smaller values specify stronger regularization) and the

choice of solver, i.e., the algorithm implementation to be used in solving the the

optimization problem incorporated in the method. Table 5.4a displays the accuracy

for the three case studies — the results are quite similar for each set, although higher

values of C result in slightly better accuracy. We underline the best value of accuracy

for each case study. Table 5.5a displays the MSE, in this case, using the value 1 for

C and using any of the solvers, it gets the best results in MSE for the three cases.

The results for SVM are given in Table 5.4b; SVM has no use for a solver, but

instead has several options for kernel functions — for our case studies, the sigmoid

kernel is the best for the grades data whereas the “rbf” kernel works best for the

purchases data set; C is still the regulation strength. Table 5.5b displays MSE for

SVM where it seems that using the values 0.5 or 1.0 for C and the solver “sigmoid”

gets the best results.

For the random forest, the results are shown in Table 5.4c: the parameters to

vary are the criterion and the number of estimators. The entropy criterion requires

an elevated number of estimators to increase its accuracy and is better for the three

case studies. Table 5.5c displays the MSE where is getting better results using

minimun number of estimators, even though the elevated number of estimators also

works.

Table 5.4d shows the results for the multi-layer perceptron model in terms of

the combination of solvers, activation functions, and the number of nodes in each

of the two layers. Stochastic gradient descent does not help, whereas the “adam”

optimizer yields the best results using the logistic activation function for both case

studies. Table 5.5d displays low errors using minimun size of neuros, even though

the accuracies are not better with these results.

We now further experiment with the best parameter configuration of each

model for each case study to determine the effect of the slice length (that is, the

Chapter 5. Experiments 35

Table 5.1: Confusion matrices for grades case.

(a) Confusion matrix for logistic regression model.

predicted

actual
1st attempt 2nd attempt Failed

1 opportunity 36 8 6

2 opportunity 0 2 0

Not passing 1 2 26

(b) Confusion matrix for SVM model.

predicted

actual
1st attempt 2nd attempt Failed

1 opportunity 34 4 6

2 opportunity 2 4 3

Not passing 3 2 25

(c) Confusion matrix for random forest model.

predicted

actual
1st attempt 2nd attempt Failed

1 opportunity 36 8 6

2 opportunity 0 2 0

Not passing 1 2 26

(d) Confusion matrix for multi-layer perceptron

model.

predicted

actual
1st attempt 2nd attempt Failed

1 opportunity 34 10 6

2 opportunity 0 2 0

Not passing 2 3 24

Chapter 5. Experiments 36

Table 5.2: Confusion matrices for purchases case.

(a) Confusion matrix for logistic regression model.

predicted

actual
Lost Not lost

Lost 208 76

Not lost 216 98

(b) Confusion matrix for SVM model.

predicted

actual
Lost Not lost

Lost 181 44

Not lost 248 125

(c) Confusion matrix for random forest model.

predicted

actual
Lost Not lost

Lost 225 80

Not lost 212 81

(d) Confusion matrix for multi-layer perceptron

model.

predicted

actual
Lost Not lost

Lost 209 71

Not lost 221 97

Chapter 5. Experiments 37

Table 5.3: Confusion matrices for diseases case.

(a) Confusion matrix for logistic regression model.

predicted

actual
Midge Respiratory

Midge 951 67

Respiratory 42 0

(b) Confusion matrix for SVM model.

predicted

actual
Midge Respiratory

Midge 951 67

Respiratory 42 0

(c) Confusion matrix for random forest model.

predicted

actual
Midge Respiratory

Midge 956 33

Respiratory 76 5

(d) Confusion matrix for multi-layer perceptron

model.

predicted

actual
Midge Respiratory

Midge 951 67

Respiratory 42 0

Chapter 5. Experiments 38

Table 5.4: Accuracies of the methods under different parameter configurations.

(a) Accuracy for logistic regression model

C Solver Grades Purchases Diseases

0.3 lbfgs 0.773 0.686 0.928

0.3 newton-cg 0.773 0.686 0.928

0.5 lbfgs 0.773 0.685 0.934

0.5 newton-cg 0.773 0.685 0.934

1.0 lbfgs 0.779 0.685 0.938

1-0 newton-cg 0.779 0.685 0.938

(b) Accuracy for SVM model

C Kernel Grades Purchases Diseases

0.3 sigmoid 0.773 0.662 0.915

0.3 rbf 0.773 0.681 0.931

0.5 sigmoid 0.779 0.661 0.909

0.5 rbf 0.773 0.680 0.936

1.0 sigmoid 0.779 0.655 0.909

1.0 rbf 0.773 0.685 0.940

(c) Accuracy for random forest model

Criterion Est. # Grades Purchases Diseases

gini 10 0.766 0.679 0.961

gini 20 0.779 0.688 0.963

gini 30 0.779 0.688 0.961

entropy 10 0.766 0.675 0.964

entropy 20 0.766 0.682 0.963

entropy 30 0.779 0.688 0.964

(d) Accuracy for multi-layer perceptron model

L1 L2 Activation Solver Grades Purchases Diseases

10 0 logistic sgd 0.466 0.641 0.905

10 0 logistic adam 0.742 0.693 0.915

10 5 logistic sgd 0.533 0.535 0.905

10 5 logistic adam 0.754 0.692 0.905

10 0 relu sgd 0.668 0.679 0.915

10 0 relu adam 0.656 0.693 0.938

10 5 relu sgd 0.748 0.665 0.915

10 5 relu adam 0.766 0.706 0.941

Chapter 5. Experiments 39

Table 5.5: MSE of the methods under different parameter configurations.

(a) MSE for logistic regression model

C Solver Grades Purchases Diseases

0.3 lbfgs 0.088 0.065 0.11

0.3 newton-cg 0.088 0.065 0.11

0.5 lbfgs 0.088 0.065 0.12

0.5 newton-cg 0.088 0.065 0.12

1.0 lbfgs 0.060 0.076 0.10

1-0 newton-cg 0.060 0.076 0.10

(b) MSE for SVM model

C Kernel Grades Purchases Diseases

0.3 sigmoid 0.088 0.043 0.10

0.3 rbf 0.088 0.052 0.14

0.5 sigmoid 0.076 0.042 0.19

0.5 rbf 0.088 0.056 0.12

1.0 sigmoid 0.076 0.054 0.19

1.0 rbf 0.088 0.054 0.11

(c) MSE for random forest model

Criterion Est. # Grades Purchases Diseases

gini 10 0.128 0.059 0.17

gini 20 0.140 0.058 0.19

gini 30 0.128 0.048 0.18

entropy 10 0.134 0.040 0.14

entropy 20 0.134 0.048 0.17

entropy 30 0.140 0.031 0.19

(d) MSE for multi-layer perceptron model

L1 L2 Activation Solver Grades Purchases Diseases

10 0 logistic sgd 0.033 0.032 0.004

10 0 logistic adam 0.114 0.067 0.10

10 5 logistic sgd 0.033 0.003 0.004

10 5 logistic adam 0.125 0.060 0.004

10 0 relu sgd 0.066 0.057 0.10

10 0 relu adam 0.099 0.059 0.009

10 5 relu sgd 0.117 0.061 0.10

10 5 relu adam 0.101 0.057 0.13

Chapter 5. Experiments 40

Table 5.6: Performance of the classification methods for the grades case study using

homework slices of various lengths

Model Slice Accuracy MSE Correct Incorrect

LR 2 0.753 0.506 60 11

RF 2 0.778 0.444 63 8

SVM 2 0.753 0.543 60 11

MLP 2 0.741 0.593 60 11

LR 3 0.778 0.407 63 8

RF 3 0.778 0.407 63 8

SVM 3 0.765 0.494 61 10

MLP 3 0.802 0.496 64 7

LR 4 0.790 0.469 63 8

RF 4 0.802 0.383 64 7

SVM 4 0.790 0.469 63 8

MLP 4 0.765 0.494 61 10

LR 5 0.790 0.469 63 8

RF 5 0.778 0.407 63 8

SVM 5 0.790 0.469 63 8

MLP 5 0.765 0.494 61 10

time series is cut to a smaller sequence).

For the grades case, the highest accuracy is 0.802, obtained by a multi-layer

perceptron using three homeworks and the exam (Figure 5.1b) and by a random

forest using four homeworks and the exam (Figure 5.1c), the former being better as

it requires less data. Even the worst models have an acceptable precision as there is

not much variation; with just two homeworks and one exam, it is possible to forecast

whether or not a student passes the class with an accuracy of nearly three quarters.

The best predictions counting true/false values are obtained by the linear regression

model Table 5.1a and the random forest model Table 5.1c.

For the purchases case study, the random forest model outperforms the others

regardless of the slice length. The lowest accuracy is that of the SVM with a four-

month slice. The results are shown in Figure 5.2. The best predictions counting

Chapter 5. Experiments 41

(a) Two homeworks, middle exam (b) Three homeworks, middle exam

(c) Four homeworks, middle exam (d) Five homeworks, middle exam

Figure 5.1: Performance of the classification methods for the grades case study using

slices of various lengths

Chapter 5. Experiments 42

true/false values are obtanined by the random forest model Table 5.2c to predict

loss.

For the diseases case study, the random forest model outperforms the others

regardless of the slice length. The lowest accuracy is 0.94 that is repeated by lin-

ear regression and support vector machine models in all the length of slices. The

results are shown in Figure 5.3. The best predictions counting true/false values are

obtanined by all the models in Table 5.3 to predict diseases obtained by midge, but

to predict respiratory diseases, the random forest model Table 5.3c which is able

to predict for this class. The problem in this study case is that a high accuracy is

obtained because of the high volume of the migde class.

Chapter 5. Experiments 43

(a) One month (b) Two months

(c) Three months (d) Four months

(e) Five months (f) Six months

Figure 5.2: Performance of the classification methods for the purchases case study in

terms of how many months ahead the forecast is made

Chapter 5. Experiments 44

Table 5.7: Performance of the classification methods for the purchases case study in terms

of how many months ahead the forecast is made

Model Slice Accuracy MSE Correct Incorrect

LR 1 0.725 0.275 442 168

RF 1 0.780 0.220 475 135

SVM 1 0.733 0.267 447 163

MLP 1 0.748 0.252 456 154

LR 2 0.717 0.283 435 173

RF 2 0.780 0.220 474 134

SVM 2 0.732 0.268 445 163

MLP 2 0.752 0.248 457 151

LR 3 0.744 0.256 450 155

RF 3 0.775 0.225 468 137

SVM 3 0.765 0.235 462 143

MLP 3 0.767 0.235 464 141

LR 4 0.730 0.270 438 163

RF 4 0.700 0.300 420 181

SVM 4 0.696 0.304 418 183

MLP 4 0.750 0.250 450 151

LR 5 0.727 0.273 436 164

RF 5 0.748 0.252 448 152

SVM 5 0.747 0.253 448 152

MLP 5 0.743 0.257 445 155

LR 6 0.709 0.291 423 175

RF 6 0.731 0.269 437 161

SVM 6 0.717 0.283 428 170

MLP 6 0.719 0.281 429 169

Chapter 5. Experiments 45

0.00

0.25

0.50

0.75

1.00

LR MLP RF SVM

model

a
c
c

model
LR

MLP

RF

SVM

(a) One week

0.00

0.25

0.50

0.75

1.00

LR MLP RF SVM

model

a
c
c

model
LR

MLP

RF

SVM

(b) Two weeks

0.00

0.25

0.50

0.75

1.00

LR MLP RF SVM

model

a
c
c

model
LR

MLP

RF

SVM

(c) Three weeks

0.00

0.25

0.50

0.75

1.00

LR MLP RF SVM

model

a
c
c

model
LR

MLP

RF

SVM

(d) Four weeks

0.00

0.25

0.50

0.75

1.00

LR MLP RF SVM

model

a
c
c

model
LR

MLP

RF

SVM

(e) Five weeks

0.00

0.25

0.50

0.75

1.00

LR MLP RF SVM

model

a
c
c

model
LR

MLP

RF

SVM

(f) Six weeks

Figure 5.3: Performance of the classification methods for the diseases case study in terms

of how many weeks ahead the forecast is made

Chapter 5. Experiments 46

Table 5.8: Performance of the classification methods for the diseases case study in terms

of how many weeks ahead the forecast is made

Model Slice Accuracy MSE Correct Incorrect

LR 1W 0.94 0.062 4606 294

RF 1W 0.98 0.024 4802 98

SVM 1W 0.94 0.062 4606 294

MLP 1W 0.94 0.057 4606 294

LR 2W 0.94 0.062 4606 294

RF 2W 0.97 0.028 4753 147

SVM 2W 0.94 0.061 4606 294

MLP 2W 0.94 0.056 4606 294

LR 3W 0.94 0.062 4606 294

RF 3W 0.97 0.033 4753 147

SVM 3W 0.94 0.061 4606 294

MLP 3W 0.95 0.054 4655 245

LR 4W 0.94 0.062 4606 294

RF 4W 0.97 0.032 4753 147

SVM 4W 0.94 0.063 4606 294

MLP 4W 0.95 0.053 4655 245

LR 5W 0.94 0.063 4606 294

RF 5W 0.96 0.039 4704 196

SVM 5W 0.94 0.063 4606 294

MLP 5W 0.94 0.061 4606 294

LR 6W 0.94 0.063 4606 294

RF 6W 0.96 0.036 4704 196

SVM 6W 0.94 0.063 4606 294

MLP 6W 0.94 0.063 4606 294

Chapter 6

Conclusions

The problem addressed in this research work is the determining the minimum amount

of information sufficient to adequately predict future values of a time series through

the use of classifiers based on supervised learning, through parameters adjustment

and limiting the input length in order to achieve a feasible accuracy with the least

amount of input data.

This thesis documents the complete process of training a supervised learning

model, through the phases of cleaning the input data, processing and classifying

the time series as well as searching for characteristics, varying the values of the pa-

rameters of the classification models, computing forecasts based on varying-length

inputs, concluding with the systematic measurement of performance in order deter-

mine with how little data can the final values of the time series be forecast with a

feasible accuracy.

A pre-processing structure for the time series was implemented, cleaning out

null data, scaling the data so that all the characteristics are within the same range (as

this may speed up supervised learning models), examining potential time windows

to detect a certain event of interest.

To obtain a good classification performance, different parametrized models

examined in terms of metrics such as cross validation; an average of all the results

47

Chapter 6. Conclusions 48

was obtained in order to compare the results of the various models.

The development for the majority of the tasks was carried out in the Python

programming language (pre-processing, scaling, classification, and obtaining the val-

idation metrics), whereas for the data visualization the R programming language was

used with the ggplot package.

6.1 Discussion

The software shows feasible results in terms of accuracy and the least amount of

error, depending on the situation, as in the Random Forest model that obtains the

best results in most of the results but its MSE results are not good in comparison

with the muti-layer perceptron. It is convenient to find a balance between both

metrics and use other metrics as Recall, Precision, or Support.

Although the scikit-learn library helps us with multiprocessing, it would still

be convenient to keep the execution times in problems with large instances to take

that in mind when deploying. Because the number of instances impacts in certain

models and also in memory space that is another fact not taken, even though many

services in the cloud have limited resources.

The software at the moment needs few resources to run because models that

use low computational performance are used, due to the number of instances used,

the results may vary in performance and in time that was not taken in mind, the

exploration of parameters were moderate for each type of model, although more

could be added. Some models have better performance depending on the number

of instances, the type of classification: binary or multiclassification as in the case of

grades.

Chapter 6. Conclusions 49

6.2 Contributions

The software created in this thesis achieves a feasible accuracy in predicting a certain

event of interest in a data series, given the parameter configuration for the model

and a series of preprocessing steps. The parameter configurations do have a clear

effect on the model performance.

6.3 Future work

Further exploration of the parameter space (that is, a more fine-grained set of values

for each factor) woulddocke be useful as well as the use of additional training models,

as the present work is limited by the scope of the scikit-learn package. Also methods

beyond the scope of supervised learning (unsupervised and reinforcement leraning in

particular) are of potential interest, although often computationally more expensive

and explore other metrics to get a better approach on how to select the right model.

The amount of window slicing is limited to a short fragment, there are two

options: ask a person who has experience on a particular case to limit what periods

to take, also the window breaks were only of length one, but it would be convenient to

explore different jumps between windows. The second option would be to exploring

multiple windows and jumps.

Also modern variants of neural networks (i.e., deep learning), especially for

recurrent neural networks are of interest but beyond the present scope of the scikit-

learn package, for which other options could be considered in future expansions of

the present work. Another future direction is additional case studies and larger set

of longer time series so as not to over-adjustthe models to the training data.

Bibliography

P. Bloomfield. Fourier Analysis of Time Series: An Introduction. Wiley Se-

ries in Probability and Statistics. Wiley, Raleigh, North Carolina, 2004. ISBN

9780471653998.

V. Boeva and E. Tsiporkova. A Multi-purpose Time Series Data Standardization

Method, pages 445–460. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

ISBN 978-3-642-13428-9. doi: 10.1007/978-3-642-13428-9 22.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001. doi:

10.1023/A:1010933404324.

O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised Learning. The MIT Press,

1st edition, 2010. ISBN 0262514125, 9780262514125.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–

297, 1995. ISSN 1573-0565. doi: 10.1007/BF00994018.

P. Cunningham, M. Cord, and S.J. Delany. Supervised Learning, pages 21–49.

Springer Berlin Heidelberg, 2008. ISBN 978-3-540-75171-7. doi: 10.1007/

978-3-540-75171-7 2.

M.H. DeGroot and M.J. Schervish. Probability and Statistics. Addison-Wesley,

Boston, USA, 2012. ISBN 9780321500465.

D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017. URL

http://archive.ics.uci.edu/ml.

50

http://archive.ics.uci.edu/ml

Bibliography 51

P. Geurts. Pattern extraction for time series classification. In L. De Raedt and

A. Siebes, editors, Principles of Data Mining and Knowledge Discovery, pages

115–127, Riverside, California, 2001. Springer Berlin Heidelberg.

V. Gómez, A. Maravall, and D. Peña. Computing missing values in time series.

In Y. Dodge and J. Whittaker, editors, Computational Statistics, pages 283–296,

Berlin, Heidelberg, Germany, 1992. Physica-Verlag HD.

J. Grandell. Time series analysis. Lecture notes, KTH Stockholm, 1998.

I. Guyon and A. Elisseeff. An Introduction to Feature Extraction, pages 1–25.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-35488-8.

doi: 10.1007/978-3-540-35488-8 1.

D.J. Hand. Principles of data mining. Drug Safety, 30(7):621–622, Jul 2007. ISSN

1179-1942. doi: 10.2165/00002018-200730070-00010.

F.E. Harrell. Ordinal Logistic Regression, pages 331–343. Springer, New York, NY,

2001. ISBN 978-1-4757-3462-1.

R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, and M. Steinbrecher. Multilayer

Perceptrons, pages 47–92. Springer London, London, 2016. ISBN 978-1-4471-

7296-3. doi: 10.1007/978-1-4471-7296-3 5.

T.W. Liao. Clustering of time series data — a survey. Pattern Recognition, 38(11):

1857–1874, November 2005. doi: 10.1016/j.patcog.2005.01.025.

G. Marti, S. Andler, F. Nielsen, and P. Donnat. Clustering financial time series: How

long is enough? In Proceedings of the Twenty-Fifth International Joint Conference

on Artificial Intelligence, pages 2583–2589. AAAI Press, 2016.

T.M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1997.

ISBN 9780070428072.

D.C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, Inc.,

Cary, North Carolina, 2006. ISBN 0470088109.

Bibliography 52

C.A. Ratanamahatana and E. Keogh. Making Time-series Classification More Ac-

curate Using Learned Constraints. SDM, 2004.

S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, Englewood, New Jersey, 2 edition, 2003. ISBN 0137903952.

M. J. Shensa. The discrete wavelet transform: wedding the a trous and mallat

algorithms. IEEE Transactions on Signal Processing, 40(10):2464–2482, October

1992. doi: 10.1109/78.157290.

L. Wei and E. Keogh. Semi-supervised time series classification. In Proceedings of

the 12th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 748–753, New York, NY, USA, 2006. ACM. doi: 10.1145/

1150402.1150498.

Y. Xiong and D.-Y. Yeung. Mixtures of arma models for model-based time series

clustering. In 2002 IEEE International Conference on Data Mining, 2002. Pro-

ceedings, pages 717–720, 2002. doi: 10.1109/ICDM.2002.1184037.

Resumen autobiográfico

Pedro Sánchez Mart́ınez

Candidato para obtener el grado de

Ingeniero en Tecnoloǵıa de Software

Universidad Autónoma de Nuevo León

Facultad de Ingenieŕıa Mecánica y Eléctrica

Tesis:

Case studies in feature extraction and parameter tuning

for time-series classification

Naćı el 12 de Septiembre de 1995 en el municipio de San Pedro Garza Garćıa,

Nuevo León. Único hijo de Gloria Mart́ınez Argumedo y Fidencio Sánchez Mart́ınez.

Hice mis estudios nivel medio superior en la Preparatoria No. 23 Unidad Santa

Catarina de la UANL durante el periodo 2011–2013. Inicié mis estudios nivel superior

en el año 2013 en la Facultad de Ingenieŕıa Mecánica y Eléctrica de la UANL en la

carrera de Ingeniero en Tecnoloǵıa de Software.

	Agradecimientos
	Resumen
	Abstract
	Introduction
	Motivation
	Hypothesis
	Objectives
	Structure

	Background
	Probability and statistics
	Probability
	Statistics

	Time series
	Preprocessing
	Artificial intelligence

	Literature review
	Proposed solution
	Methodology
	Tools
	Data
	Phases

	Implementation

	Experiments
	Conclusions
	Discussion
	Contributions
	Future work

	Bibliography

